PHY-396 K. Problem set #4. Due October 5, 2004.

. Back in homework#2 we developed Hamiltonian formalism for a massive vector field A*(x).
Upon quantization, the 3—vector field A(z) and its canonical conjugate —E(x) become quan-

tum fields subject to equal-time commutation relations

(h =1,¢ =1 units) governed by the free Hamiltonian
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(we assume J* = 0). For the non-dynamical A field, its time-independent equation of motion

becomes an operatorial identity
Alg) = ——22, (3)

The purpose of the present exercise is to expand fields in terms of creation and annihilation
operators le< y and a, , where A labels three different polarization states of a vector particle
(spin = 1). Generally, bases for polarization states correspond to k—dependent complex bases

ey (k) for ordinary 3-vectors,
ey(k)-ex(k) = oy (4)

Of particular convenience is the helicity basis of eigenvectors of the vector product ik x |

namely

ik x ey(k) = Akley(k), A=—1,0,+1. (5)

By convention, the overall phases of the helicity eigenvectors are chosen such that

egk) = o, ei(k) = (-1)%e_\(k), e\(-k) = —ej(+k). (6)



Combining Fourier transform with a basis decomposition, we have
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and ditto for the E(x) field and its Ek’ A modes.

(a) Show that AL/\ = —fl,kﬂ\, EAIT{/\ = —Efk,/\’ and derive the equal-time commutation

relations for the Ak7 ) and EAk7 \ operators.

(b) Show that
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where wy = Vk2 +m? and Ci ) = 1+ 8y o(k?/m?).

(c) Define creation and annihilation operators according to
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and verify that they satisfy (relativistically-normalized) equal-time bosonic commutation

relations.

(d) Show that
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(e) Next, consider the time dependence of the free vector field and show that

A f) — / o wacm( ey (k) g, (0) + ) al,0)
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(f) Write down a similar formula for the A%(x,t) (use eq. (3)). Together with the previous



result, you should get

(12)

~ dgk —ikx ~ 1kx px ~
A,u(m) :/M; (6 k fﬂ(k’ )\) (Zk’/\(0> + €+k f'u(k> >‘) aL’A(0)>k0—+wk

where
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Note that the 4—vectors f#(k, \) are basically the purely-spatial vectors ey (k) Lorentz-
boosted into the moving particle’s frame. In particular, for all (k,A), f#f; = —1 and
[Pk, =0.

(g) Finally, verify that the vector field (12) satisfies the free equations of motion aufl“(x) =0
and (9% + m?) At (z) = 0.

2. Now consider the Feynman propagator for the massive vector field.

(a) First, a lemma: Show that

S NN = g+ A (14
A

(b) Next, show that
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= (—QW T2 ) D(z —y).
(c) Finally, the Feynman propagator: Show that
v * 1 v v a“ay
6 = T @AW = (<0 - 23 ) Grta =)
(16)
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where

T At (2)AY (y) = TAM2)AY(y) + i0M06V06W (2 — ). (17)

For the explanation of the T* modification of the time-ordered product of vector fields,

please see Quantum Field Theory by Claude Itzykson and Jean—Bernard Zuber.

3. Finally, an exercise in Dirac’s v matrices. Assume the anti-commutation relations
Y+ A = 29" (18)

and the definition

S = =5 L Ay (19)

but do not assume the specific form of the 4 x 4 matrices v* and S*”.
(a) Show that
[SFA A1) = —igMa" 4 ighia” (20)
and

[SK)\)SMV} _ ,ig)\uslw o Z'g)\VSK,U, _ igﬁus)\u + Z'gFWS)\M. (21)

(b) Calculate {77,797}, [v7, 7"y #7"] and [S77, 7 y#9"].

(c) Show that Y%7a =4, 7*7"7a = —29", 1*7#7"7a = 4g" and 1%y M#7"ya = =297,
Hint: use v*v" = 2¢"“ — 4¥~* repeatedly.

Continuous Lorentz transforms obtain from integrating infinite sequences of infinitesimal

transforms X'* = X*+¢eO!, X" where Ouy = —Oy,,. Altogether, a finite continuous transform

acts as X'* = L', X" where

L = exp(©), ie, LMY=+ 04 + 10105 + t61ere), + - (22)

(d) Let L be a Lorentz transform of the form (22), and let M (L) = exp(—£40,55°°).
Show that M~Y(L)y*M (L) = L5~".



