
PHY–396 K. Problem set #6. Due October 12, 2004.

0. First of all, finish problem #3 from the previous homework set #5. It is due by Thursday,

October 7.

1. The first problem of this set concerns finite representations of the continuous Lorentz

symmetry SO+(3, 1), or rather its double cover Spin(3, 1) ∼= SL(2,C). Let us define

Ĵ± = 1
2

(
Ĵ ± iK̂

)
. (1)

where K̂i = Ĵ0i = −Ĵ i0 are generators of the Lorentz boosts and Ĵ i are generators of the

space rotations.

(a) Show that the Ĵ+ and the Ĵ− commute with each other and that each satisfies the

commutations relations of an angular momentum, [Ĵk±, Ĵ
`
±] = iεk`mĴm± .

The “angular momentum” Ĵ+ is non-hermitian and hence its finite irreducible representa-

tions are non-unitary analytic continuations of the spin–j representations of a hermitian Ĵ.

The same is true for the Ĵ− = Ĵ†+. Thus altogether, the finite irreducible representations

of the Lorentz algebra are specified by two integer or half-integer ‘spins’ j+ and j−.

The simplest non-trivial representations of the Lorentz algebra are (j+ = 1
2 , j− = 0) —

the left-handed Weyl spinor where Ĵ acts as 1
2
σσ and K̂ as − i

2
σσ, and (j+ = 0, j− = 1

2)

— the right-handed Weyl spinor where Ĵ also acts as 1
2
σσ but K̂ acts as + i

2
σσ. Together,

the two Weyl spinors comprise the Dirac spinor. From the SL(2,C) point if view, the

left-handed Weyl spinor is the doublet representation 2 which defines the SL(2,C) group

while the right-handed Weyl spinor is the conjugate doublet 2̄. As discussed in class, the

Weyl spinors transform according to

ψLα 7→ M β
α ψ

L
β and (σ2ψ

R)α̇ 7→ M∗β̇α̇ (σ2ψ
R)β̇ (2)

where M ≡ ML and σ2M
∗σ2 = MR. Note the notations: the un-dotted indices from the

beginning of the Greek alphabet for the left-handed spinors, and the dotted indices for the

right-handed spinors.
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A generic (j+, j−) representation of the Lorentz algebra becomes in the SL(2,C) terms a

tensor Φα1...α(2j+),γ̇1...γ̇(2j−)
, totally symmetric in its 2j+ un-dotted indices α1, . . . , α(2j+) and

separately totally symmetric in its 2j− dotted indices γ̇1, . . . , γ̇(2j−); it transforms according

to

Φα1...α(2j+),γ̇1...γ̇(2j−)
7→ M β1

α1
· · ·M β(2j+)

α(2j+)
M∗ δ̇1γ̇1

· · ·U∗ δ̇(2j−)

γ̇(2j−)
Φβ1...β(2j+),δ̇1...δ̇(2j−)

. (3)

The vector representation of the Lorentz group has j+ = j− = 1
2 . To cast the action of the

Lorentz group in SL(2,C) terms (3), we define a 2× 2 matrix

Xµσ
µ ≡ X0 − X · σσ (4)

where σ0 is a unit 2 × 2 matrix while σ1, σ2 and σ3 are the Pauli matrices. In SL(2,C)

terms, this matrix has one dotted and one un-dotted index,

Xαγ̇ = Xµσ
µ
αγ̇ = X0δαγ̇ − X · σσαγ̇ , (5)

thus it transforms under the SL(2,C) as a (12 ,
1
2) bi-spinor,

X ′αγ̇ = M β
α M

∗δ̇
γ̇ Xγδ̇ , (6)

or in matrix form

X ′µσ
µ = M(Xµσ

µ)M †. (7)

(b) Show that for any SL(2,C) matrix M , eq. (7) defines an orthochronous Lorentz trans-

form X ′µ = L ν
µ (M)Xν . (Hint: prove and use det(Xµσ

µ) = X2 ≡ XµX
µ).

∗ For extra challenge, show that L is proper, i.e. det(L) = +1.

(c) Verify the group law, L(M2M1) = L(M2)L(M1).

(d) Verify explicitly that for M = exp
(
− i

2θ n · σσ
)
, L(M) is a rotation by angle θ around

axis n, while for M = exp
(
−1

2r n · σσ
)
, L(M) is a boost of rapidity r (β = tanh r,

γ = cosh r) in the direction n.
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In general, any (j+, j−) multiplet of the SL(2,C) with integer net spin j++j− is equivalent

to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the

tensors.) For example, the (1, 1) multiplet is equivalent to a symmetric, traceless 2–index

tensor Tµν = T νµ, Tµµ = 0. For j+ 6= j− the representation is complex, but one can make a

real tensor by combining two multiplets with opposite j+ and j−, for example the (1, 0) and

(0, 1) multiplets are together equivalent to an antisymmetric 2–index tensor Fµν = −F νµ.

(e) Verify the above examples.

Hint: For any angular momentum (j = 1
2)⊗ (j = 1

2) = (j = 1)⊕ (j = 0).

The SL(2,C) multiplets with half-integer j++j− are equivalent to Lorentz spinors or spin-

tensors which carry one Weyl index as well as 0, 1 or more 4–vector indices and transform

according to

ψµ,...,να 7→ M β
α (L)Lµκ · · ·Lνλ ψ

κ,...,λ
β or ψµ,...,να̇ 7→ M∗β̇α̇ (L)Lµκ · · ·Lνλ ψ

κ,...,λ

β̇
. (8)

(f) Show that the (1, 12) and (12 , 1) multiplets are together equivalent to the Rarita–

Schwinger spin-vector Ψµ
a which has one Dirac index a and one 4–vector index µ

and satisfies a Lorentz-covariant constraint γµΨµ = 0.

2. Now consider an im-proper Lorentz symmetry, namely the parity symmetry AKA reflection

of space

Pµν =


+1 for µ = ν = 0,

−1 for µ = ν = 1, 2, 3,

0 for µ 6= ν,

 thus P (t,x) = (+t,−x); (9)

note P 2 = 1.

In the Fock space, parity is represented by a unitary operator P̂ ; by the group law, P̂2 = 1

and hence P̂† = P̂−1 = P̂ .

(a) Use group law to show that P̂ commutes with the angular momenta Ĵ i but anti-

commutes with the boost generators K̂i, then use these commutation relations to

show that P̂ acting on the quantum fields must interchange the j+ and j− quantum
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numbers of the field components. For example, parity must turn left-handed Weyl

spinors into right-handed Weyl spinors and vice verse, thus P̂(12 , 0)P̂ = (0, 12) and

P̂(0, 12)P̂ = (12 , 0).

(b) A Dirac spinor field transforms under parity according to

P̂ Ψ̂(x, t) P̂ ≡ Ψ̂′(x, t) = ±γ0 Ψ̂(−x, t) (10)

where the overall ± sign is the intrinsic parity of a particular Dirac field.

Verify that the Dirac equation is covariant under this transformation and that the

Dirac action
∫
d4xLDirac is invariant.

3. Finally, a few exercises concerning the plane-wave solutions e−ipxu(p, s) and e+ipxv(p, x)

of the Dirac equation.

(a) Show that

∑
s=1,2

ua(p, s)ūb(p, s) = (6p+m)ab and
∑
s=1,2

va(p, s)v̄b(p, s) = (6p−m)ab . (11)

(b) Prove the Gordon identity

ū(p′, s′)γµu(p.s) =
(p′ + p)µ

2m
ū(p′s′)u(p, s) +

i(p′ − p)ν
m

ū(p′s′)Sµνu(p, s). (12)

Hint: First, use Dirac equations for the u and the ū′ to show that

2mū′γµu = ū′(6p′γµ + γµ 6p)u.

(c) Generalize the Gordon identity to ū′γµv, v̄′γµu and v̄′γµv.

(d) [Added on 10/07] Verify that for p′ = −p, u†(p, s)v(p′, s′) = 0.
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