PHY-396 K. Problem set #6. Due October 12, 2004.

0. First of all, finish problem #3 from the previous homework set #5. It is due by Thursday,
October 7.

1. The first problem of this set concerns finite representations of the continuous Lorentz

symmetry SO7(3,1), or rather its double cover Spin(3,1) = SL(2,C). Let us define
J. = 1(J +iK). (1)

where Kt = J% = — Ji0 are generators of the Lorentz boosts and Jt are generators of the

space rotations.

(a) Show that the J, and the J_ commute with each other and that each satisfies the

commutations relations of an angular momentum, [J§, J{] = ie*m 7.

The “angular momentum” J + is non-hermitian and hence its finite irreducible representa-
tions are non-unitary analytic continuations of the spin—j representations of a hermitian J.
The same is true for the J_ = J 1 Thus altogether, the finite irreducible representations
of the Lorentz algebra are specified by two integer or half-integer ‘spins’ j; and j_.

The simplest non-trivial representations of the Lorentz algebra are (j; = %, j— =0) —
the left-handed Weyl spinor where J acts as %0’ and K as —%U, and (j+ = 0,5 = %)
— the right-handed Weyl spinor where J also acts as %0 but K acts as +%0’. Together,
the two Weyl spinors comprise the Dirac spinor. From the SL(2,C) point if view, the
left-handed Weyl spinor is the doublet representation 2 which defines the SL(2, C) group
while the right-handed Weyl spinor is the conjugate doublet 2. As discussed in class, the

Weyl spinors transform according to
vh = MPyE and (o0™)s o M (020", (2)

where M = M7, and o9M*09 = Mpg. Note the notations: the un-dotted indices from the
beginning of the Greek alphabet for the left-handed spinors, and the dotted indices for the
right-handed spinors.



A generic (j4,j—) representation of the Lorentz algebra becomes in the SL(2, C) terms a

tensor <I>a1...a(2]-+),¢1...1(2].7), totally symmetric in its 274 un-dotted indices aq, . .. , Q(24,) and
separately totally symmetric in its 2j_ dotted indices 1, ..., ¥(2;_); it transforms according
to
i) s MBSO L ytte i s (3)
Q1025 )51V (25 ) a1 Q25 it "}/(23'7) ﬁ1...ﬁ(2j+)751...6(2j7) :
The vector representation of the Lorentz group has j, = j_ = % To cast the action of the
Lorentz group in SL(2, C) terms (3), we define a 2 x 2 matrix
Xt = Xo - X0 (4)
where ¢ is a unit 2 x 2 matrix while o', 62 and o3 are the Pauli matrices. In SL(2,C)

terms, this matrix has one dotted and one un-dotted index,

Xa:y = XHUZ‘V = ‘X()(soé;y — X-O'a:y, (5)

thus it transforms under the SL(2,C) as a (%, %) bi-spinor,
%6
Xoy = MPIMPX 5, (6)

or in matrix form

X)ot = M(X,o")M'. (7)

(b) Show that for any SL(2, C) matrix M, eq. (7) defines an orthochronous Lorentz trans-
form X], = LV(M)X,. (Hint: prove and use det(X,0") = X? = X, X#).
* For extra challenge, show that L is proper, i.e. det(L) = +1.
(c) Verify the group law, L(MaM;) = L(Ma)L(M).
(d) Verify explicitly that for M = exp(—46n- o), L(M) is a rotation by angle # around

axis n, while for M = exp(—%rn . 0'), L(M) is a boost of rapidity r (8 = tanhr,

v = coshr) in the direction n.



In general, any (j;, j—) multiplet of the SL(2, C) with integer net spin jy +j_ is equivalent
to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the
tensors.) For example, the (1,1) multiplet is equivalent to a symmetric, traceless 2-index
tensor TH" = TV* T) = 0. For j4 # j_ the representation is complex, but one can make a
real tensor by combining two multiplets with opposite j; and j_, for example the (1,0) and
(0,1) multiplets are together equivalent to an antisymmetric 2-index tensor FH = —FVF,

(e) Verify the above examples.

Hint: For any angular momentum (j = %) RE=35)=0U=1)®((=0).

The SL(2, C) multiplets with half-integer j; 4 j_ are equivalent to Lorentz spinors or spin-
tensors which carry one Weyl index as well as 0, 1 or more 4-vector indices and transform

according to

oA % oA
wg.,.,u = Maﬁ(L)LMH"' V)\wlﬂ€7 7 or wg’ Yo Mdﬁ(L)LMff"'LV)\wg’ - (8)

(f) Show that the (1,1) and (3,1) multiplets are together equivalent to the Rarita-

Schwinger spin-vector W4 which has one Dirac index a and one 4-vector index p

and satisfies a Lorentz-covariant constraint -y, W* = 0.

. Now consider an im-proper Lorentz symmetry, namely the parity symmetry AKA reflection

of space
+1 forpu=v=20,
Pho=d 1 forp=v=123 thus P(t,x) = (4, —x); (9)
0 for u # v,
note P? = 1.

In the Fock space, parity is represented by a unitary operator 75; by the group law, P2=1
and hence Pt = P~1 =P,

(a) Use group law to show that P commutes with the angular momenta J? but anti-
commutes with the boost generators K i, then use these commutation relations to

show that P acting on the quantum fields must interchange the j; and j_ quantum



numbers of the field components. For example, parity must turn left-handed Weyl
spinors into right-handed Weyl spinors and vice verse, thus 75(%,0)75 = (0, %) and
75(0, %)75 = (%,0).

(b) A Dirac spinor field transforms under parity according to

PUx, )P = Vixt) = £7°U(—x,1t) (10)
where the overall £ sign is the intrinsic parity of a particular Dirac field.

Verify that the Dirac equation is covariant under this transformation and that the

Dirac action [d*zLpjpc is invariant.

3. Finally, a few exercises concerning the plane-wave solutions e~P%u(p, s) and e™P%v(p, )

of the Dirac equation.
(a) Show that

Z Ua(pas)ab(p75> = (ﬂ‘i‘m)ab and Z Ua(p,S)i_JbQ),S) = (ﬂ_m)ab- (11>

s=1,2 s=1,2
(b) Prove the Gordon identity

(pur—p)“ﬂ(p'sl)U(P, s) + ME(P/SI)SW“@’ s (12)

u(p', s" ) u(p.s) = 5 -

Hint: First, use Dirac equations for the v and the @ to show that
2mi'yHu = u' (P + y* P)u.
(c) Generalize the Gordon identity to @'v*v, v'y*u and v'y*v.

(d) [Added on 10/07] Verify that for p’ = —p, ul(p, s)v(p',s') = 0.



