0. First of all, finish problem \#3 from the previous homework set \#5. It is due by Thursday, October 7.
1. The first problem of this set concerns finite representations of the continuous Lorentz symmetry $\operatorname{SO}^{+}(3,1)$, or rather its double cover $\operatorname{Spin}(3,1) \cong S L(2, \mathbf{C})$. Let us define

$$
\begin{equation*}
\hat{\mathbf{J}}_{ \pm}=\frac{1}{2}(\hat{\mathbf{J}} \pm i \hat{\mathbf{K}}) \tag{1}
\end{equation*}
$$

where $\hat{K}^{i}=\hat{J}^{0 i}=-\hat{J}^{i 0}$ are generators of the Lorentz boosts and \hat{J}^{i} are generators of the space rotations.
(a) Show that the $\hat{\mathbf{J}}_{+}$and the $\hat{\mathbf{J}}_{-}$commute with each other and that each satisfies the commutations relations of an angular momentum, $\left[\hat{J}_{ \pm}^{k}, \hat{J}_{ \pm}^{\ell}\right]=i \epsilon^{k \ell m} \hat{J}_{ \pm}^{m}$.
The "angular momentum" $\hat{\mathbf{J}}_{+}$is non-hermitian and hence its finite irreducible representations are non-unitary analytic continuations of the spin $-j$ representations of a hermitian $\hat{\mathbf{J}}$. The same is true for the $\hat{\mathbf{J}}_{-}=\hat{\mathbf{J}}_{+}^{\dagger}$. Thus altogether, the finite irreducible representations of the Lorentz algebra are specified by two integer or half-integer 'spins' j_{+}and j_{-}.

The simplest non-trivial representations of the Lorentz algebra are ($j_{+}=\frac{1}{2}, j_{-}=0$) the left-handed Weyl spinor where $\hat{\mathbf{J}}$ acts as $\frac{1}{2} \sigma$ and $\hat{\mathbf{K}}$ as $-\frac{i}{2} \sigma$, and ($j_{+}=0, j_{-}=\frac{1}{2}$) - the right-handed Weyl spinor where $\hat{\mathbf{J}}$ also acts as $\frac{1}{2} \sigma$ but $\hat{\mathbf{K}}$ acts as $+\frac{i}{2} \sigma$. Together, the two Weyl spinors comprise the Dirac spinor. From the $S L(2, \mathbf{C})$ point if view, the left-handed Weyl spinor is the doublet representation $\mathbf{2}$ which defines the $S L(2, \mathbf{C})$ group while the right-handed Weyl spinor is the conjugate doublet $\overline{\mathbf{2}}$. As discussed in class, the Weyl spinors transform according to

$$
\begin{equation*}
\psi_{\alpha}^{L} \mapsto M_{\alpha}^{\beta} \psi_{\beta}^{L} \quad \text { and } \quad\left(\sigma_{2} \psi^{R}\right)_{\dot{\alpha}} \mapsto M_{\dot{\alpha}}^{* \dot{\beta}}\left(\sigma_{2} \psi^{R}\right)_{\dot{\beta}} \tag{2}
\end{equation*}
$$

where $M \equiv M_{L}$ and $\sigma_{2} M^{*} \sigma_{2}=M_{R}$. Note the notations: the un-dotted indices from the beginning of the Greek alphabet for the left-handed spinors, and the dotted indices for the right-handed spinors.

A generic $\left(j_{+}, j_{-}\right)$representation of the Lorentz algebra becomes in the $S L(2, \mathbf{C})$ terms a tensor $\Phi_{\left.\alpha_{1} \ldots \alpha_{\left(2 j_{+}\right)}, \dot{\gamma}_{1} \ldots \dot{\gamma}_{\left(2 j_{-}\right)}\right)}$, totally symmetric in its $2 j_{+}$un-dotted indices $\alpha_{1}, \ldots, \alpha_{\left(2 j_{+}\right)}$and separately totally symmetric in its $2 j_{-}$dotted indices $\dot{\gamma}_{1}, \ldots, \dot{\gamma}_{\left(2 j_{-}\right)}$; it transforms according to

$$
\begin{equation*}
\Phi_{\alpha_{1} \ldots \alpha_{\left(2 j_{+}\right)}, \dot{\gamma}_{1} \ldots \dot{\gamma}_{\left(2 j_{-}\right)}} \mapsto M_{\alpha_{1}}^{\beta_{1}} \cdots M_{\alpha_{\left(2 j_{+}\right)}}^{\beta_{\left(2 j_{+}\right)}} M_{\dot{\gamma}_{1}}^{* \dot{\delta}_{1}} \cdots U_{\dot{\gamma}_{\left(2 j_{-}\right)}}^{* \dot{\delta}_{\left(2 j_{-}\right)}} \Phi_{\beta_{1} \ldots \beta_{\left(2 j_{+}\right)}, \dot{\delta}_{1} \ldots \dot{\delta}_{\left(2 j_{-}\right)}} . \tag{3}
\end{equation*}
$$

The vector representation of the Lorentz group has $j_{+}=j_{-}=\frac{1}{2}$. To cast the action of the Lorentz group in $S L(2, \mathbf{C})$ terms (3), we define a 2×2 matrix

$$
\begin{equation*}
X_{\mu} \sigma^{\mu} \equiv X_{0}-\mathbf{X} \cdot \boldsymbol{\sigma} \tag{4}
\end{equation*}
$$

where σ^{0} is a unit 2×2 matrix while σ^{1}, σ^{2} and σ^{3} are the Pauli matrices. In $S L(2, \mathbf{C})$ terms, this matrix has one dotted and one un-dotted index,

$$
\begin{equation*}
X_{\alpha \dot{\gamma}}=X_{\mu} \sigma_{\alpha \dot{\gamma}}^{\mu}=X_{0} \delta_{\alpha \dot{\gamma}}-\mathbf{X} \cdot \boldsymbol{\sigma}_{\alpha \dot{\gamma}} \tag{5}
\end{equation*}
$$

thus it transforms under the $S L(2, \mathbf{C})$ as a $\left(\frac{1}{2}, \frac{1}{2}\right)$ bi-spinor,

$$
\begin{equation*}
X_{\alpha \dot{\gamma}}^{\prime}=M_{\alpha}^{\beta} M_{\dot{\gamma}}^{* \dot{\delta}} X_{\gamma \dot{\delta}} \tag{6}
\end{equation*}
$$

or in matrix form

$$
\begin{equation*}
X_{\mu}^{\prime} \sigma^{\mu}=M\left(X_{\mu} \sigma^{\mu}\right) M^{\dagger} \tag{7}
\end{equation*}
$$

(b) Show that for any $S L(2, \mathbf{C})$ matrix M, eq. (7) defines an orthochronous Lorentz transform $X_{\mu}^{\prime}=L_{\mu}^{\nu}(M) X_{\nu}$. (Hint: prove and use $\operatorname{det}\left(X_{\mu} \sigma^{\mu}\right)=X^{2} \equiv X_{\mu} X^{\mu}$).

* For extra challenge, show that L is proper, i.e. $\operatorname{det}(L)=+1$.
(c) Verify the group law, $L\left(M_{2} M_{1}\right)=L\left(M_{2}\right) L\left(M_{1}\right)$.
(d) Verify explicitly that for $M=\exp \left(-\frac{i}{2} \theta \mathbf{n} \cdot \boldsymbol{\sigma}\right), L(M)$ is a rotation by angle θ around axis \mathbf{n}, while for $M=\exp \left(-\frac{1}{2} r \mathbf{n} \cdot \boldsymbol{\sigma}\right), L(M)$ is a boost of rapidity $r(\beta=\tanh r$, $\gamma=\cosh r)$ in the direction \mathbf{n}.

In general, any $\left(j_{+}, j_{-}\right)$multiplet of the $S L(2, \mathbf{C})$ with integer net spin $j_{+}+j_{-}$is equivalent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the tensors.) For example, the $(1,1)$ multiplet is equivalent to a symmetric, traceless 2-index tensor $T^{\mu \nu}=T^{\nu \mu}, T_{\mu}^{\mu}=0$. For $j_{+} \neq j_{-}$the representation is complex, but one can make a real tensor by combining two multiplets with opposite j_{+}and j_{-}, for example the $(1,0)$ and $(0,1)$ multiplets are together equivalent to an antisymmetric 2-index tensor $F^{\mu \nu}=-F^{\nu \mu}$.
(e) Verify the above examples.

Hint: For any angular momentum $\left(j=\frac{1}{2}\right) \otimes\left(j=\frac{1}{2}\right)=(j=1) \oplus(j=0)$.
The $S L(2, \mathbf{C})$ multiplets with half-integer $j_{+}+j_{-}$are equivalent to Lorentz spinors or spintensors which carry one Weyl index as well as 0,1 or more 4 -vector indices and transform according to

$$
\begin{equation*}
\psi_{\alpha}^{\mu, \ldots, \nu} \mapsto M_{\alpha}^{\beta}(L) L_{\kappa}^{\mu} \cdots L_{\lambda}^{\nu} \psi_{\beta}^{\kappa, \ldots, \lambda} \quad \text { or } \quad \psi_{\dot{\alpha}}^{\mu, \ldots, \nu} \mapsto M_{\dot{\alpha}}^{* \dot{\beta}}(L) L_{\kappa}^{\mu} \cdots L_{\lambda}^{\nu} \psi_{\dot{\beta}}^{\kappa, \ldots, \lambda} . \tag{8}
\end{equation*}
$$

(f) Show that the $\left(1, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right)$ multiplets are together equivalent to the RaritaSchwinger spin-vector Ψ_{a}^{μ} which has one Dirac index a and one 4 -vector index μ and satisfies a Lorentz-covariant constraint $\gamma_{\mu} \Psi^{\mu}=0$.
2. Now consider an im-proper Lorentz symmetry, namely the parity symmetry AKA reflection of space

$$
P_{\nu}^{\mu}=\left\{\begin{array}{ll}
+1 & \text { for } \mu=\nu=0 \tag{9}\\
-1 & \text { for } \mu=\nu=1,2,3, \\
0 & \text { for } \mu \neq \nu,
\end{array}\right\} \quad \text { thus } P(t, \mathbf{x})=(+t,-\mathbf{x}) ;
$$

note $P^{2}=1$.
In the Fock space, parity is represented by a unitary operator $\hat{\mathcal{P}}$; by the group law, $\hat{\mathcal{P}}^{2}=1$ and hence $\hat{\mathcal{P}}^{\dagger}=\hat{\mathcal{P}}^{-1}=\hat{\mathcal{P}}$.
(a) Use group law to show that $\hat{\mathcal{P}}$ commutes with the angular momenta \hat{J}^{i} but anticommutes with the boost generators \hat{K}^{i}, then use these commutation relations to show that $\hat{\mathcal{P}}$ acting on the quantum fields must interchange the j_{+}and j_{-}quantum
numbers of the field components. For example, parity must turn left-handed Weyl spinors into right-handed Weyl spinors and vice verse, thus $\hat{\mathcal{P}}\left(\frac{1}{2}, 0\right) \hat{\mathcal{P}}=\left(0, \frac{1}{2}\right)$ and $\hat{\mathcal{P}}\left(0, \frac{1}{2}\right) \hat{\mathcal{P}}=\left(\frac{1}{2}, 0\right)$.
(b) A Dirac spinor field transforms under parity according to

$$
\begin{equation*}
\hat{\mathcal{P}} \hat{\Psi}(\mathbf{x}, t) \hat{\mathcal{P}} \equiv \hat{\Psi}^{\prime}(\mathbf{x}, t)= \pm \gamma^{0} \hat{\Psi}(-\mathbf{x}, t) \tag{10}
\end{equation*}
$$

where the overall \pm sign is the intrinsic parity of a particular Dirac field.
Verify that the Dirac equation is covariant under this transformation and that the Dirac action $\int d^{4} x \mathcal{L}_{\text {Dirac }}$ is invariant.
3. Finally, a few exercises concerning the plane-wave solutions $e^{-i p x} u(p, s)$ and $e^{+i p x} v(p, x)$ of the Dirac equation.
(a) Show that

$$
\begin{equation*}
\sum_{s=1,2} u_{a}(p, s) \bar{u}_{b}(p, s)=(\not p+m)_{a b} \quad \text { and } \quad \sum_{s=1,2} v_{a}(p, s) \bar{v}_{b}(p, s)=(\not p-m)_{a b} . \tag{11}
\end{equation*}
$$

(b) Prove the Gordon identity

$$
\begin{equation*}
\bar{u}\left(p^{\prime}, s^{\prime}\right) \gamma^{\mu} u(p . s)=\frac{\left(p^{\prime}+p\right)^{\mu}}{2 m} \bar{u}\left(p^{\prime} s^{\prime}\right) u(p, s)+\frac{i\left(p^{\prime}-p\right)_{\nu}}{m} \bar{u}\left(p^{\prime} s^{\prime}\right) S^{\mu \nu} u(p, s) \tag{12}
\end{equation*}
$$

Hint: First, use Dirac equations for the u and the \bar{u}^{\prime} to show that
$2 m \bar{u}^{\prime} \gamma^{\mu} u=\bar{u}^{\prime}\left(\not p^{\prime} \gamma^{\mu}+\gamma^{\mu} \not p\right) u$.
(c) Generalize the Gordon identity to $\bar{u}^{\prime} \gamma^{\mu} v, \bar{v}^{\prime} \gamma^{\mu} u$ and $\bar{v}^{\prime} \gamma^{\mu} v$.
(d) $[$ Added on $10 / 07]$ Verify that for $\mathbf{p}^{\prime}=-\mathbf{p}, u^{\dagger}(p, s) v\left(p^{\prime}, s^{\prime}\right)=0$.

