1. Consider the matrix $\gamma^{5} \stackrel{\text { def }}{=} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
(a) Show that γ^{5} anticommutes with each of the γ^{μ} matrices, $\gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5}$.
(b) Show that γ^{5} is hermitian and that $\left(\gamma^{5}\right)^{2}=1$.
(c) Show that $\gamma^{5}=(-i / 24) \epsilon_{\kappa \lambda \mu \nu} \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}$ and $\gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}=-i \epsilon^{\kappa \lambda \mu \nu} \gamma^{5}$.
(d) Show that $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=i \epsilon^{\kappa \lambda \mu \nu} \gamma_{\kappa} \gamma^{5}$.
(e) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices: $1, \gamma^{\mu}, \gamma^{[\mu} \gamma^{\nu]}, \gamma^{5} \gamma^{\mu}$ and γ^{5}.
Conventions: $\epsilon^{0123}=+1, \epsilon_{0123}=-1, \gamma^{[\mu} \gamma^{\nu]}=\frac{1}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)$, $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=\frac{1}{6}\left(\gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}-\gamma^{\lambda} \gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda}-\gamma^{\mu} \gamma^{\lambda} \gamma^{\nu}+\gamma^{\nu} \gamma^{\lambda} \gamma^{\mu}-\gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}\right)$, and ditto for the $\gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}$.
2. Consider bilinear products of a Dirac field $\Psi(x)$ and its conjugate $\bar{\Psi}(x)$. Generally, such products have form $\bar{\Psi} \Gamma \Psi$ where Γ is one of 16 matrices discussed in 1 .(e); altogether, we have
$S=\bar{\Psi} \Psi, \quad V^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi, \quad T^{\mu \nu}=\bar{\Psi} i \gamma^{[\mu} \gamma^{\nu]} \Psi, \quad A^{\mu}=\bar{\Psi} \gamma^{5} \gamma^{\mu} \Psi \quad$ and $\quad P=\bar{\Psi} i \gamma^{5} \Psi$.
(a) Show that all the bilinears (1) are Hermitian.

Hint: First, show that $(\bar{\Psi} \Gamma \Psi)^{\dagger}=\overline{\Psi \Gamma} \Psi$
(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars, the V^{μ} and the A^{μ} as vectors and the $T^{\mu \nu}$ as an antisymmetric tensor.
(c) Find the transformation rules of the bilinears (1) under parity (cf. problem 2 of the previous set) and show that while S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial vector.

Next, consider the charge-conjugation properties of Dirac bilinears. To avoid operator ordering problems, take $\Psi(x)$ and $\Psi^{\dagger}(x)$ to be "classical" fermionic fields which anticommute with each other, $\Psi_{\alpha} \Psi_{\beta}^{\dagger}=-\Psi_{\beta}^{\dagger} \Psi_{\alpha}$.
(d) In the Weyl convention, $\hat{\mathcal{C}} \hat{\Psi}(x) \hat{\mathcal{C}}= \pm \gamma^{2} \hat{\Psi}^{*}(x)$. Show that $\hat{\mathcal{C}} \hat{\bar{\Psi}} \Gamma \hat{\Psi} \hat{\mathcal{C}}=\hat{\bar{\Psi}} \Gamma^{c} \hat{\Psi}$ where $\Gamma^{c}=\gamma^{0} \gamma^{2} \Gamma^{\top} \gamma^{0} \gamma^{2}$.
(e) Calculate Γ^{c} for all 16 independent matrices Γ and find out which Dirac bilinears are \mathcal{C}-even and which are \mathcal{C}-odd.
3. Next, an exercise in fermionic creation and annihilation operators and their anticommutation relations,

$$
\begin{equation*}
\left\{\hat{a}_{\alpha}, \hat{a}_{\beta}\right\}=\left\{\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right\}=0, \quad\left\{\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right\}=\delta_{\alpha, \beta} . \tag{2}
\end{equation*}
$$

(a) Calculate the commutators $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}\right],\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\delta}\right]$ and $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger} \hat{a}_{\delta}\right]$.
(b) Consider two one-body operators \hat{A}_{1} and \hat{B}_{1} and let \hat{C}_{1} be their commutator, $\hat{C}_{1}=$ [$\left.\hat{A}_{1}, \hat{B}_{1}\right]$. Let \hat{A} be the second-quantized forms of $\hat{A}_{\text {tot }}$,

$$
\begin{equation*}
\hat{A}=\sum_{\alpha, \beta}\langle\alpha| \hat{A}_{1}|\beta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \tag{3}
\end{equation*}
$$

and ditto for the second-quantized \hat{B} and \hat{C}.
Verify that $[\hat{A}, \hat{B}]=\hat{C}$.
(c) Calculate the commutator $\left[\hat{a}_{\mu}^{\dagger} \hat{a}_{\nu}, \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta}\right]$.
(d) The second quantized form of a two-body additive operator

$$
\hat{B}_{\mathrm{tot}}=\frac{1}{2} \sum_{i \neq j} \hat{B}_{2}\left(i^{\text {th }} \text { and } j^{\text {th }} \text { particles }\right)
$$

acting on identical fermions is

$$
\begin{equation*}
\hat{B}=\frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta}\langle\alpha \otimes \beta| \hat{B}_{2}|\gamma \otimes \delta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\delta} \hat{a}_{\gamma} . \tag{4}
\end{equation*}
$$

This expression is similar to its bosonic counterpart, but note the reversed order of the annihilation operators \hat{a}_{δ} and \hat{a}_{γ}.

Consider a one-body operator \hat{A}_{1} and two two-body operators \hat{B}_{2} and \hat{C}_{2}. Show that if $\hat{C}_{2}=\left[\left(\hat{A}_{1}\left(1^{\text {st }}\right)+\hat{A}_{1}(2 \underline{\text { nd }})\right), \hat{B}_{2}\right]$, then the respective second-quantized operators in the fermionic Fock space satisfy $\hat{C}=[\hat{A}, \hat{B}]$.
4. Finally, consider the quantum Dirac fields

$$
\begin{align*}
& \hat{\Psi}(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{s}\left(e^{-i p x} u(\mathbf{p}, s) \hat{a}_{\mathbf{p}, s}+e^{+i p x} v(\mathbf{p}, s) \hat{b}_{\mathbf{p}, s}^{\dagger}\right)_{p^{0}=+E_{\mathbf{p}}}, \\
& \hat{\bar{\Psi}}(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{s}\left(e^{-i p x} \bar{v}(\mathbf{p}, s) \hat{b}_{\mathbf{p}, s}+e^{+i p x} \bar{u}(\mathbf{p}, s) \hat{a}_{\mathbf{p}, s}^{\dagger}\right)_{p^{0}=+E_{\mathbf{p}}} \tag{5}
\end{align*}
$$

where $\hat{a}, \hat{b}, \hat{a}^{\dagger}$, and \hat{b}^{\dagger} are relativistically normalized fermionic annihilation and creation operators, thus

$$
\begin{equation*}
\left\{\hat{a}_{\mathbf{p}, s}, \hat{a}_{\mathbf{p}^{\prime}, s^{\prime}}^{\dagger}\right\}=\left\{\hat{b}_{\mathbf{p}, s}, \hat{b}_{\mathbf{p}^{\prime}, s^{\prime}}^{\dagger}\right\}=\delta_{s, s^{\prime}} \times 2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \tag{6}
\end{equation*}
$$

while all other anticommutators vanish,

$$
\begin{equation*}
\{\hat{a} \text { or } \hat{b}, \hat{a} \text { or } \hat{b}\}=0, \quad\left\{\hat{a}^{\dagger} \text { or } \hat{b}^{\dagger}, \hat{a}^{\dagger} \text { or } \hat{b}^{\dagger}\right\}=0, \quad\left\{\hat{a}, \hat{b}^{\dagger}\right\}=\left\{\hat{b}, \hat{a}^{\dagger}\right\}=0 . \tag{7}
\end{equation*}
$$

As discussed in class, the free Dirac Hamiltonian is
$\hat{H}=\int d^{3} \mathbf{x} \hat{\bar{\Psi}}(-i \vec{\gamma} \cdot \nabla+m) \hat{\Psi}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{s}\left(E_{\mathbf{p}} \hat{a}_{\mathbf{p}, s}^{\dagger} \hat{a}_{\mathbf{p}, s}+E_{\mathbf{p}} \hat{b}_{\mathbf{p}, s}^{\dagger} \hat{b}_{\mathbf{p}, s}\right)+$ const.
(a) Derive Dirac field's stress-energy tensor (use Noether theorem) and show that the net mechanical momentum is

$$
\begin{equation*}
\hat{\mathbf{P}}_{\text {mech }}=\int d^{3} \mathbf{x} \hat{\Psi}^{\dagger}(-i \nabla) \hat{\Psi}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{s}\left(\mathbf{p} \hat{a}_{\mathbf{p}, s}^{\dagger} \hat{a}_{\mathbf{p}, s}+\mathbf{p} \hat{b}_{\mathbf{p}, s}^{\dagger} \hat{b}_{\mathbf{p}, s}\right) \tag{9}
\end{equation*}
$$

(b) Show that the electric 4-current of the electron field is $J^{\mu}(x)=-e \bar{\Psi}(x) \gamma^{\mu} \Psi(x)$ and that the net electric charge operator is

$$
\begin{align*}
\hat{Q} & =-e \int d^{3} \mathbf{x} \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x)+\text { constant } \\
& =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{s}\left(-e \hat{a}_{\mathbf{p}, s}^{\dagger} \hat{a}_{\mathbf{p}, s}+e \hat{b}_{\mathbf{p}, s}^{\dagger} \hat{b}_{\mathbf{p}, s}\right) . \tag{10}
\end{align*}
$$

Note: The constant term in the first line arises from the operator ordering ambiguity when the classical electron field is quantized. It's actual value - which happens to be infinite - is determined by demanding that the vacuum state has zero electric charge.
(c) Finally, consider the net spin of electrons and positrons,

$$
\begin{equation*}
\hat{\mathbf{S}}_{\text {net }}=\int d^{3} \mathbf{x} \hat{\Psi}^{\dagger} \mathbf{S} \hat{\Psi} . \tag{11}
\end{equation*}
$$

Expand this operator into momentum modes

$$
\begin{equation*}
\hat{\mathbf{S}}_{\mathrm{net}}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \hat{\mathbf{S}}_{\mathbf{p}} \tag{12}
\end{equation*}
$$

and show that for the non-relativistic modes $(|\mathbf{p}| \ll m)$

$$
\begin{equation*}
\hat{\mathbf{S}}_{\mathbf{p}}=\sum_{s, s^{\prime}} \xi_{s}^{\dagger} \frac{\sigma_{2}}{2} \xi_{s^{\prime}} \times\left(\hat{a}_{\mathbf{p}, s}^{\dagger} \hat{a}_{\mathbf{p}, s^{\prime}}+\hat{b}_{\mathbf{p}, s}^{\dagger} \hat{b}_{\mathbf{p}, s^{\prime}}\right)+O(|\mathbf{p}| / m) . \tag{13}
\end{equation*}
$$

The relativistic modes with $|\mathbf{p}| \gtrsim O(m)$ are more complicated because of mixing between the spin and the orbital angular momentum.

Hint: Approximate $u(\mathbf{p}, s) \approx u(\mathbf{0}, s)$ and $v(-\mathbf{p}, s) \approx v(\mathbf{0}, s)$ for small $|\mathbf{p}| \ll m$, and use $\eta_{s}=\sigma_{2} \xi_{s}^{*}$.

In particle terms, eqs. (8)-(13) mean that the fermionic operator $\hat{a}_{\mathbf{p}, s}^{\dagger}$ creates and $\hat{a}_{\mathbf{p}, s}$ annihilates an electron with momentum \mathbf{p}, energy $E_{\mathbf{p}}=+\sqrt{m^{2}+\mathbf{p}^{2}}$, spin $=\frac{1}{2}$ and spin state ξ_{s}, and electric charge $=-e$, while operator $\hat{b}_{\mathbf{p}, s}^{\dagger}$ creates and $\hat{b}_{\mathbf{p}, s}$ annihilates a positron with exactly the same momentum, energy, spin and spin state, but electric charge $=+e$.

