- 1. Consider the matrix $\gamma^5 \stackrel{\text{def}}{=} i\gamma^0\gamma^1\gamma^2\gamma^3$.
 - (a) Show that γ^5 anticommutes with each of the γ^{μ} matrices, $\gamma^5 \gamma^{\mu} = -\gamma^{\mu} \gamma^5$.
 - (b) Show that γ^5 is hermitian and that $(\gamma^5)^2 = 1$.
 - (c) Show that $\gamma^5 = (-i/24)\epsilon_{\kappa\lambda\mu\nu}\gamma^{\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}$ and $\gamma^{[\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu]} = -i\epsilon^{\kappa\lambda\mu\nu}\gamma^5$.
 - (d) Show that $\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = i\epsilon^{\kappa\lambda\mu\nu}\gamma_{\kappa}\gamma^{5}$.
 - (e) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices: 1, γ^{μ} , $\gamma^{[\mu}\gamma^{\nu]}$, $\gamma^{5}\gamma^{\mu}$ and γ^{5} .

Conventions: $\epsilon^{0123} = +1$, $\epsilon_{0123} = -1$, $\gamma^{[\mu}\gamma^{\nu]} = \frac{1}{2}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})$, $\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = \frac{1}{6}(\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu} - \gamma^{\lambda}\gamma^{\nu}\gamma^{\mu} + \gamma^{\mu}\gamma^{\nu}\gamma^{\lambda} - \gamma^{\mu}\gamma^{\lambda}\gamma^{\nu} + \gamma^{\nu}\gamma^{\lambda}\gamma^{\mu} - \gamma^{\nu}\gamma^{\mu}\gamma^{\lambda})$, and ditto for the $\gamma^{[\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu]}$.

2. Consider bilinear products of a Dirac field $\Psi(x)$ and its conjugate $\overline{\Psi}(x)$. Generally, such products have form $\overline{\Psi}\Gamma\Psi$ where Γ is one of 16 matrices discussed in **1**.(e); altogether, we have

$$S = \overline{\Psi}\Psi, \quad V^{\mu} = \overline{\Psi}\gamma^{\mu}\Psi, \quad T^{\mu\nu} = \overline{\Psi}i\gamma^{[\mu}\gamma^{\nu]}\Psi, \quad A^{\mu} = \overline{\Psi}\gamma^{5}\gamma^{\mu}\Psi \quad \text{and} \quad P = \overline{\Psi}i\gamma^{5}\Psi.$$
(1)

- (a) Show that all the bilinears (1) are Hermitian. Hint: First, show that $(\overline{\Psi}\Gamma\Psi)^{\dagger} = \overline{\Psi}\overline{\Gamma}\Psi$
- (b) Show that under *continuous* Lorentz symmetries, the S and the P transform as scalars, the V^{μ} and the A^{μ} as vectors and the $T^{\mu\nu}$ as an antisymmetric tensor.
- (c) Find the transformation rules of the bilinears (1) under parity (*cf.* problem 2 of the previous set) and show that while S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial vector.

Next, consider the charge-conjugation properties of Dirac bilinears. To avoid operator ordering problems, take $\Psi(x)$ and $\Psi^{\dagger}(x)$ to be "classical" fermionic fields which *anticommute* with each other, $\Psi_{\alpha}\Psi_{\beta}^{\dagger} = -\Psi_{\beta}^{\dagger}\Psi_{\alpha}$.

- (d) In the Weyl convention, $\hat{\mathcal{C}}\hat{\Psi}(x)\hat{\mathcal{C}} = \pm \gamma^2 \hat{\Psi}^*(x)$. Show that $\hat{\mathcal{C}}\overline{\Psi}\Gamma\hat{\Psi}\hat{\mathcal{C}} = \overline{\Psi}\Gamma^c\hat{\Psi}$ where $\Gamma^c = \gamma^0\gamma^2\Gamma^{\top}\gamma^0\gamma^2$.
- (e) Calculate Γ^c for all 16 independent matrices Γ and find out which Dirac bilinears are C-even and which are C-odd.
- 3. Next, an exercise in fermionic creation and annihilation operators and their anticommutation relations,

$$\{\hat{a}_{\alpha}, \hat{a}_{\beta}\} = \{\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\} = 0, \quad \{\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\} = \delta_{\alpha,\beta}.$$

$$(2)$$

- (a) Calculate the commutators $[\hat{a}^{\dagger}_{\alpha}\hat{a}_{\beta},\hat{a}^{\dagger}_{\gamma}]$, $[\hat{a}^{\dagger}_{\alpha}\hat{a}_{\beta},\hat{a}_{\delta}]$ and $[\hat{a}^{\dagger}_{\alpha}\hat{a}_{\beta},\hat{a}^{\dagger}_{\gamma}\hat{a}_{\delta}]$.
- (b) Consider two one-body operators \hat{A}_1 and \hat{B}_1 and let \hat{C}_1 be their commutator, $\hat{C}_1 = [\hat{A}_1, \hat{B}_1]$. Let \hat{A} be the second-quantized forms of \hat{A}_{tot} ,

$$\hat{A} = \sum_{\alpha,\beta} \langle \alpha | \, \hat{A}_1 \, | \beta \rangle \, \hat{a}^{\dagger}_{\alpha} \hat{a}_{\beta} \,, \qquad (3)$$

and ditto for the second-quantized \hat{B} and \hat{C} .

Verify that $[\hat{A}, \hat{B}] = \hat{C}$.

- (c) Calculate the commutator $[\hat{a}^{\dagger}_{\mu}\hat{a}_{\nu}, \hat{a}^{\dagger}_{\alpha}\hat{a}^{\dagger}_{\beta}\hat{a}_{\gamma}\hat{a}_{\delta}]$.
- (d) The second quantized form of a two-body additive operator

$$\hat{B}_{\text{tot}} = \frac{1}{2} \sum_{i \neq j} \hat{B}_2(i^{\text{th}} \text{ and } j^{\text{th}} \text{ particles})$$

acting on identical fermions is

$$\hat{B} = \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta} \langle \alpha \otimes \beta | \hat{B}_2 | \gamma \otimes \delta \rangle \, \hat{a}^{\dagger}_{\alpha} \hat{a}^{\dagger}_{\beta} \hat{a}_{\delta} \hat{a}_{\gamma} \,. \tag{4}$$

This expression is similar to its bosonic counterpart, but note the reversed order of the annihilation operators \hat{a}_{δ} and \hat{a}_{γ} .

Consider a one-body operator \hat{A}_1 and two two-body operators \hat{B}_2 and \hat{C}_2 . Show that if $\hat{C}_2 = \left[\left(\hat{A}_1(1^{\underline{st}}) + \hat{A}_1(2^{\underline{nd}}) \right), \hat{B}_2 \right]$, then the respective second-quantized operators in the fermionic Fock space satisfy $\hat{C} = [\hat{A}, \hat{B}]$.

4. Finally, consider the quantum Dirac fields

$$\hat{\Psi}(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} \sum_{s} \left(e^{-ipx} u(\mathbf{p}, s) \hat{a}_{\mathbf{p},s} + e^{+ipx} v(\mathbf{p}, s) \hat{b}_{\mathbf{p},s}^{\dagger} \right)_{p^0 = +E_{\mathbf{p}}},$$

$$\hat{\overline{\Psi}}(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} \sum_{s} \left(e^{-ipx} \overline{v}(\mathbf{p}, s) \hat{b}_{\mathbf{p},s} + e^{+ipx} \overline{u}(\mathbf{p}, s) \hat{a}_{\mathbf{p},s}^{\dagger} \right)_{p^0 = +E_{\mathbf{p}}},$$
(5)

where \hat{a} , \hat{b} , \hat{a}^{\dagger} , and \hat{b}^{\dagger} are relativistically normalized fermionic annihilation and creation operators, thus

$$\{\hat{a}_{\mathbf{p},s}, \hat{a}_{\mathbf{p}',s'}^{\dagger}\} = \{\hat{b}_{\mathbf{p},s}, \hat{b}_{\mathbf{p}',s'}^{\dagger}\} = \delta_{s,s'} \times 2E_{\mathbf{p}}(2\pi)^{3}\delta^{(3)}(\mathbf{p}-\mathbf{p}')$$
(6)

while all other anticommutators vanish,

$$\{\hat{a} \operatorname{or} \hat{b}, \hat{a} \operatorname{or} \hat{b}\} = 0, \quad \{\hat{a}^{\dagger} \operatorname{or} \hat{b}^{\dagger}, \hat{a}^{\dagger} \operatorname{or} \hat{b}^{\dagger}\} = 0, \quad \{\hat{a}, \hat{b}^{\dagger}\} = \{\hat{b}, \hat{a}^{\dagger}\} = 0.$$
(7)

As discussed in class, the free Dirac Hamiltonian is

$$\hat{H} = \int d^3 \mathbf{x} \hat{\overline{\Psi}} (-i\vec{\gamma} \cdot \nabla + m) \hat{\Psi} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} \sum_s \left(E_{\mathbf{p}} \hat{a}^{\dagger}_{\mathbf{p},s} \hat{a}_{\mathbf{p},s} + E_{\mathbf{p}} \hat{b}^{\dagger}_{\mathbf{p},s} \hat{b}_{\mathbf{p},s} \right) + \text{ const.}$$
(8)

(a) Derive Dirac field's stress-energy tensor (use Noether theorem) and show that the net mechanical momentum is

$$\hat{\mathbf{P}}_{\text{mech}} = \int d^3 \mathbf{x} \, \hat{\Psi}^{\dagger}(-i\nabla) \hat{\Psi} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} \sum_{s} \left(\mathbf{p} \, \hat{a}_{\mathbf{p},s}^{\dagger} \hat{a}_{\mathbf{p},s} + \mathbf{p} \, \hat{b}_{\mathbf{p},s}^{\dagger} \hat{b}_{\mathbf{p},s} \right). \tag{9}$$

(b) Show that the electric 4-current of the electron field is $J^{\mu}(x) = -e\overline{\Psi}(x)\gamma^{\mu}\Psi(x)$ and that the net electric charge operator is

$$\hat{Q} = -e \int d^3 \mathbf{x} \,\hat{\Psi}^{\dagger}(x) \hat{\Psi}(x) + \text{constant} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} \sum_s \left(-e \,\hat{a}_{\mathbf{p},s}^{\dagger} \hat{a}_{\mathbf{p},s} + e \,\hat{b}_{\mathbf{p},s}^{\dagger} \hat{b}_{\mathbf{p},s} \right).$$
(10)

Note: The constant term in the first line arises from the operator ordering ambiguity when the classical electron field is quantized. It's actual value — which happens to be infinite — is determined by demanding that the vacuum state has zero electric charge.

(c) Finally, consider the net spin of electrons and positrons,

$$\hat{\mathbf{S}}_{\text{net}} = \int d^3 \mathbf{x} \, \hat{\Psi}^{\dagger} \mathbf{S} \hat{\Psi}. \tag{11}$$

Expand this operator into momentum modes

$$\hat{\mathbf{S}}_{\text{net}} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} \hat{\mathbf{S}}_{\mathbf{p}}$$
(12)

and show that for the non-relativistic modes $(|\mathbf{p}| \ll m)$

$$\hat{\mathbf{S}}_{\mathbf{p}} = \sum_{s,s'} \xi_s^{\dagger} \frac{\boldsymbol{\sigma}}{2} \xi_{s'} \times \left(\hat{a}_{\mathbf{p},s}^{\dagger} \hat{a}_{\mathbf{p},s'} + \hat{b}_{\mathbf{p},s}^{\dagger} \hat{b}_{\mathbf{p},s'} \right) + O(|\mathbf{p}|/m).$$
(13)

The relativistic modes with $|\mathbf{p}| \gtrsim O(m)$ are more complicated because of mixing between the spin and the orbital angular momentum.

Hint: Approximate $u(\mathbf{p}, s) \approx u(\mathbf{0}, s)$ and $v(-\mathbf{p}, s) \approx v(\mathbf{0}, s)$ for small $|\mathbf{p}| \ll m$, and use $\eta_s = \sigma_2 \xi_s^*$.

In particle terms, eqs. (8)–(13) mean that the fermionic operator $\hat{a}_{\mathbf{p},s}^{\dagger}$ creates and $\hat{a}_{\mathbf{p},s}$ annihilates an electron with momentum \mathbf{p} , energy $E_{\mathbf{p}} = +\sqrt{m^2 + \mathbf{p}^2}$, spin $= \frac{1}{2}$ and spin state ξ_s , and electric charge = -e, while operator $\hat{b}_{\mathbf{p},s}^{\dagger}$ creates and $\hat{b}_{\mathbf{p},s}$ annihilates a positron with exactly the same momentum, energy, spin and spin state, but electric charge = +e.