
PHY–396 K. Problem set #7. Due October 19, 2004.

1. Consider the matrix γ5
def
= iγ0γ1γ2γ3.

(a) Show that γ5 anticommutes with each of the γµ matrices, γ5γµ = −γµγ5.

(b) Show that γ5 is hermitian and that (γ5)2 = 1.

(c) Show that γ5 = (−i/24)εκλµνγ
κγλγµγν and γ[κγλγµγν] = −iεκλµν γ5.

(d) Show that γ[λγµγν] = iεκλµν γκγ
5.

(e) Show that any 4 × 4 matrix Γ is a unique linear combination of the following 16

matrices: 1, γµ, γ[µγν], γ5γµ and γ5.

Conventions: ε0123 = +1, ε0123 = −1, γ[µγν] = 1
2(γµγν − γνγµ),

γ[λγµγν] = 1
6(γλγµγν − γλγνγµ + γµγνγλ − γµγλγν + γνγλγµ − γνγµγλ),

and ditto for the γ[κγλγµγν].

2. Consider bilinear products of a Dirac field Ψ(x) and its conjugate Ψ(x). Generally, such

products have form ΨΓΨ where Γ is one of 16 matrices discussed in 1.(e); altogether, we

have

S = ΨΨ, V µ = ΨγµΨ, Tµν = Ψiγ[µγν]Ψ, Aµ = Ψγ5γµΨ and P = Ψiγ5Ψ.

(1)

(a) Show that all the bilinears (1) are Hermitian.

Hint: First, show that
(
ΨΓΨ

)†
= ΨΓΨ

(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V µ and the Aµ as vectors and the Tµν as an antisymmetric tensor.

(c) Find the transformation rules of the bilinears (1) under parity (cf. problem 2 of the

previous set) and show that while S is a true scalar and V is a true (polar) vector, P

is a pseudoscalar and A is an axial vector.

Next, consider the charge-conjugation properties of Dirac bilinears. To avoid operator or-

dering problems, take Ψ(x) and Ψ†(x) to be “classical” fermionic fields which anticommute

with each other, ΨαΨ†β = −Ψ†βΨα.
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(d) In the Weyl convention, ĈΨ̂(x)Ĉ = ±γ2Ψ̂∗(x). Show that ĈΨ̂ΓΨ̂Ĉ = Ψ̂ΓcΨ̂ where

Γc = γ0γ2Γ>γ0γ2.

(e) Calculate Γc for all 16 independent matrices Γ and find out which Dirac bilinears are

C–even and which are C–odd.

3. Next, an exercise in fermionic creation and annihilation operators and their anticommuta-

tion relations,

{âα, âβ} = {â†α, â
†
β} = 0, {âα, â

†
β} = δα,β . (2)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ] and [â†αâβ, â

†
γ âδ].

(b) Consider two one-body operators Â1 and B̂1 and let Ĉ1 be their commutator, Ĉ1 =

[Â1, B̂1]. Let Â be the second-quantized forms of Âtot,

Â =
∑
α,β

〈α| Â1 |β〉 â†αâβ , (3)

and ditto for the second-quantized B̂ and Ĉ.

Verify that [Â, B̂] = Ĉ.

(c) Calculate the commutator [â†µâν , â
†
αâ
†
β âγ âδ].

(d) The second quantized form of a two-body additive operator

B̂tot = 1
2

∑
i6=j

B̂2(i
th

and j
th

particles)

acting on identical fermions is

B̂ = 1
2

∑
α,β,γ,δ

〈α⊗ β| B̂2 |γ ⊗ δ〉 â†αâ
†
β âδâγ . (4)

This expression is similar to its bosonic counterpart, but note the reversed order of

the annihilation operators âδ and âγ .

Consider a one-body operator Â1 and two two-body operators B̂2 and Ĉ2. Show that

if Ĉ2 =
[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
, then the respective second-quantized operators in

the fermionic Fock space satisfy Ĉ = [Â, B̂].
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4. Finally, consider the quantum Dirac fields

Ψ̂(x) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e−ipxu(p, s)âp,s + e+ipxv(p, s)b̂†p,s

)
p0=+Ep

,

Ψ̂(x) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e−ipxv̄(p, s)b̂p,s + e+ipxū(p, s)â†p,s

)
p0=+Ep

,

(5)

where â, b̂, â†, and b̂† are relativistically normalized fermionic annihilation and creation

operators, thus

{âp,s, â
†
p′,s′} = {b̂p,s, b̂

†
p′,s′} = δs,s′ × 2Ep(2π)3δ(3)(p− p′) (6)

while all other anticommutators vanish,

{â or b̂ , â or b̂} = 0, {â† or b̂† , â† or b̂†} = 0, {â, b̂†} = {b̂, â†} = 0. (7)

As discussed in class, the free Dirac Hamiltonian is

Ĥ =

∫
d3xΨ̂(−i~γ · ∇ + m)Ψ̂ =

∫
d3p

(2π)3
1

2Ep

∑
s

(
Ep â

†
p,sâp,s + Ep b̂

†
p,sb̂p,s

)
+ const.

(8)

(a) Derive Dirac field’s stress-energy tensor (use Noether theorem) and show that the net

mechanical momentum is

P̂mech =

∫
d3x Ψ̂†(−i∇)Ψ̂ =

∫
d3p

(2π)3
1

2Ep

∑
s

(
p â†p,sâp,s + p b̂†p,sb̂p,s

)
. (9)

(b) Show that the electric 4-current of the electron field is Jµ(x) = −eΨ(x)γµΨ(x) and

that the net electric charge operator is

Q̂ = −e
∫
d3x Ψ̂†(x)Ψ̂(x) + constant

=

∫
d3p

(2π)3
1

2Ep

∑
s

(
−e â†p,sâp,s + e b̂†p,sb̂p,s

)
.

(10)

Note: The constant term in the first line arises from the operator ordering ambiguity

when the classical electron field is quantized. It’s actual value — which happens to be

infinite — is determined by demanding that the vacuum state has zero electric charge.
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(c) Finally, consider the net spin of electrons and positrons,

Ŝnet =

∫
d3x Ψ̂†SΨ̂. (11)

Expand this operator into momentum modes

Ŝnet =

∫
d3p

(2π)3
1

2Ep
Ŝp (12)

and show that for the non-relativistic modes (|p| � m)

Ŝp =
∑
s,s′

ξ†s
σσ
2
ξs′ ×

(
â†p,sâp,s′ + b̂†p,sb̂p,s′

)
+ O(|p|/m). (13)

The relativistic modes with |p| >∼ O(m) are more complicated because of mixing

between the spin and the orbital angular momentum.

Hint: Approximate u(p, s) ≈ u(0, s) and v(−p, s) ≈ v(0, s) for small |p| � m, and

use ηs = σ2ξ
∗
s .

In particle terms, eqs. (8)–(13) mean that the fermionic operator â†p,s creates and âp,s

annihilates an electron with momentum p, energy Ep = +
√
m2 + p2, spin = 1

2 and spin

state ξs, and electric charge = −e, while operator b̂†p,s creates and b̂p,s annihilates a positron

with exactly the same momentum, energy, spin and spin state, but electric charge = +e.
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