
PHY–396 K. Problem set #12. Due November 23, 2004.

1. In a Yukawa theory with Ms > 2mf , the scalar particles are unstable against decay

into fermion + antifermion pairs.

Write down the tree-level matrix elementM(S → f+f̄), sum |M|2 over final particles’

spins, and calculate the total decay rate S → f + f̄ .

2. Consider a Yukawa theory of two Dirac fields Ψ1(x) and Ψ2(x) coupled to the same

real scalar field Φ(x):

L = Ψ1(i 6∂ −m1)Ψ1 + Ψ2(i 6∂ −m2)Ψ2 + 1
2(∂µΦ)2 − 1

2M
2
sΦ2

− g1ΦΨ1Ψ1 − g2ΦΨ2Ψ2 .
(1)

At the tree level, calculate the matrix element, the partial cross-section and the total

cross-section for elastic scattering of one type of a fermion off the other type, f1 +f2 →
f1 + f2. Take the initial fermions to be unpolarized and sum over the final fermion’s

polarizations.

3. Finally, consider the muon decay, µ− → e−ν̄eνµ. Since neutrinos are hard to detect

experimentally, the readily measurable quantities for this process are the total muon

decay rate Γµ = 1/τµ and the energy distribution of electrons produced by decaying

muons; In this exercise, we calculate these quantities from the Fermi theory of weak

interactions.

According to the Fermi theory, the matrix element for muon decay is

〈
e−, ν̄e, νµ

∣∣M ∣∣µ−〉 =
GF√

2

[
ū(νµ)(1− γ5)γαu(µ−)

]
×
[
ū(e−)(1− γ5)γαv(ν̄e)

]
. (2)

The modern Standard Model of particle interactions produces essentially the same

answer at the tree level of the perturbation theory.
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(a) Sum the absolute square of the amplitude (2) over the final particle spins and

average over the initial muon’s spin. Show that altogether,

1
2

∑
all

spins

∣∣〈e−, ν̄e, νµ∣∣M ∣∣µ−〉∣∣2 = 64G2
F (pµ · pν̄) (pe · pν). (3)

The rest of this exercise is the phase space calculation. The following lemma is very

useful for three-body decays like µ− → e− + νµ + ν̄e:

(b) Consider a generic three-body decay of some particles of mass M0 into three par-

ticles of respective masses m1, m2, and m3. Show that in the rest frame of the

original particle the partial decay rate is given by

dΓ =
1

2M0
× |M|2 × d3Ω

256π5
× dE1 dE2 dE3 δ(E1 + E2 + E3 −M0) (4)

where d3Ω refers to three angular variables parameterizing the directions of the

three final-state particles relative to some external frame but not affecting the

angles between the three momenta. For example, one may use two angles to

describe the orientation of the decay plane (the three momenta are coplanar,

p1 + p2 + p3 = 0) and one more angle to fix the direction of e.g., p1 in that

plane. Altogether,
∫
d3Ω = 4π × 2π = 8π2.

Also show that when m1 = m2 = m3 = 0, the kinematically allowed range of the

final particles’ energies is given by

0 ≤ E1, E2, E3 ≤ 1
2M0 while E1 + E2 + E3 = M0, (5)

but for the non-zero masses m1,2,3 this range is much more complicated.

The electron and the neutrinos are much lighter then the muon, so in most decay

events all three final-state particles are ultra-relativistic. This allows us to approximate

me ≈ mν ≈ mν̄ ≈ 0, which greatly simplifies the last part of this exercise:

(c) Integrate the muon’s partial decay rate over the final particle energies and derive

first dΓ/dEe and then the total decay rate.
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