1. First, a reading assignment: Quantum Mechanics and Path Integrals by Feynman \& Hibbs. Read all you can about care and use of Path Integrals.
2. Second, a generalized reading assignment: Refresh your memories of Statistical Mechanics, especially partition functions and related quantities. Use any graduate-level SM book you like.
3. Finally, an actual exercise. Consider a particle on a 1 D circle of radius R, or equivalently a 1D particle in a box of length $L=2 \pi R$ with periodic boundary conditions where moving past the $X=L$ points brings you back to $x=0$. In other words, the particle's position $x(t)$ is defined modulo L.
(a) Consider all possible particle's paths from a fixed point x_{0} (modulo L) at time $t=0$ to a fixed point x^{\prime} (modulo L) at time $t=T$. Show that the space of such paths is isomorphic to the space of free particle's paths from a fixed x_{0} at $t=0$ to any of the points $x^{\prime}+n L$ at $t=T$, for all integer $n=0, \pm 1, \pm 2, \ldots$. Then use path integral formalism to show that

$$
\begin{equation*}
U_{\mathrm{box}}\left(x^{\prime} ; x_{0}\right)=\sum_{n=-\infty}^{+\infty} U_{\mathrm{free}}\left(x^{\prime}+n L ; x_{0}\right) \tag{1}
\end{equation*}
$$

where $U_{\text {box }}$ and $U_{\text {free }}$ are the evolution kernels (between times $t=0$ and $t=T$) for the particle in a box and for the free particle.

According to Poisson re-summation formula, if a function $F(n)$ of integer n can be continued to a function $F(\nu)$ of arbitrary real ν, then

$$
\begin{align*}
\sum_{n=-\infty}^{+\infty} F(n) & =\int d \nu F(\nu) \times \sum_{n=-\infty}^{+\infty} \delta(\nu-n) \\
& =\sum_{\ell=-\infty}^{+\infty} \int d \nu F(\nu) \times e^{2 \pi i \ell \nu} \tag{2}
\end{align*}
$$

(b) The free particle (living on an infinite 1D line) has evolution kernel

$$
\begin{equation*}
U_{\text {free }}\left(x^{\prime} ; x_{0}\right)=\sqrt{\frac{M}{2 \pi i \hbar T}} \times \exp \left(+\frac{i M\left(x^{\prime}-x_{0}\right)^{2}}{2 \hbar T}\right) \tag{3}
\end{equation*}
$$

Plug this free kernel into eq. (1) and use Poisson formula to sum over n.
(c) Verify that the resulting evolution kernel for the particle in a box agrees with the usual QM formula

$$
\begin{equation*}
U_{\mathrm{box}}\left(x^{\prime} ; x_{0}\right)=\sum_{p} L^{-1 / 2} e^{i p x^{\prime} / \hbar} \times e^{-i T\left(p^{2} / 2 M\right) / \hbar} \times L^{-1 / 2} e^{-i p x_{0} / \hbar} \tag{4}
\end{equation*}
$$

where p takes box-quantized values

$$
\begin{equation*}
p=\frac{2 \pi \hbar}{L} \times \text { integer } \tag{5}
\end{equation*}
$$

