As discussed in class, in the purely scalar field theory, renormalization of the field strength begins at two-loop level. Specifically, the 1PI diagram

provides the leading contribution to the $d \Sigma\left(p^{2}\right) / d p^{2}$ and hence to the $Z-1$.
Your task is to evaluate this contribution. This is a difficult calculation, so proceed very carefully.

1. First, use Feynman parameters to write the product of 3 propagators as

$$
\begin{equation*}
\prod_{j=1}^{3} \frac{i}{q_{j}^{2}-m^{2}+i 0}=\iiint d x d y d z \delta(x+y+z-1) \frac{2 i^{3}}{(\mathcal{D})^{3}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{D}=x q_{1}^{2}+y q_{2}^{2}+z q_{3}^{2}-m^{2}+i 0 . \tag{3}
\end{equation*}
$$

Then substitute $q_{3}=p-q_{1}=q_{2}$ and introduce linear combinations k_{1} and k_{2} of the q_{1}, q_{2}, and p such that $d^{4} k_{1} d^{4} k_{2}=d^{4} q_{1} d^{4} q_{2}$ and

$$
\begin{equation*}
\mathcal{D}=\alpha k_{1}^{2}+\beta k_{2}^{2}+\gamma p^{2}-m^{2}+i 0 \tag{4}
\end{equation*}
$$

for some (x, y, z)-dependent coefficients α, β, γ.
Warning: Do not set $p^{2}=m^{2}$ at this stage.
2. Express the derivative $d \Sigma\left(p^{2}\right) / d p^{2}$ in terms of

$$
\begin{equation*}
\iint d^{4} k_{1} d^{4} k_{2} \frac{1}{\mathcal{D}^{4}} \tag{5}
\end{equation*}
$$

Note that although this integral diverges as $k_{1,2} \rightarrow \infty$, the divergence is logarithmic rather than quadratic.
3. To evaluate the momentum integral (5), first Wick-rotate both momenta k_{1} and k_{2} to the Euclidean momentum space, and then use dimensional regularization.

Here are some formulæ you will find useful at this stage:

$$
\begin{align*}
\frac{6}{A^{4}} & =\int_{0}^{\infty} d t t^{3} e^{-A t} \tag{6}\\
\int \frac{d^{D} k}{(2 \pi)^{D}} e^{-c t k^{2}} & =(4 \pi c t)^{-D / 2} \tag{7}\\
\Gamma(2 \epsilon) X^{\epsilon} & =\frac{1}{2 \epsilon}-\gamma_{E}+\frac{1}{2} \log X . \tag{8}
\end{align*}
$$

4. At this stage, you should arrive at a formula which looks like

$$
\begin{align*}
\frac{d \Sigma}{d p^{2}}=\iiint d x d y d z & \delta(x+y+z-1) F(x, y, z) \times \\
& \times\left\{\frac{1}{\epsilon}+\log \frac{\mu^{2}}{m^{2}}+\text { const }+\log G\left(x, y, z ; p^{2} / m^{2}\right)\right\} \tag{9}
\end{align*}
$$

for some rational functions F, G of the Feynman parameters (and in case of G, also of p^{2} / m^{2}). Our goal is the field strength renormalization factor

$$
\begin{equation*}
Z=\left[1-\frac{d \Sigma}{d p^{2}}\right]^{-1} \tag{10}
\end{equation*}
$$

where the derivative is evaluated at $p^{2}=M_{\mathrm{ph}}^{2}$ — the physical mass ${ }^{2}$ of the scalar particle. To the leading approximation, we may let $M_{\mathrm{ph}}^{2} \approx m^{2}$, — and that should simplify the $G(x, y, z)$ function in eq. (9) just a bit.

Nevertheless, the Feynman parameter integral (9) remains a frightful mess. Do not try to evaluate it by hand - it would take way too much time. Instead, you should use Mathematica (or equivalent software). To help it along, replace the (x, y, z) variables with (w, ξ) according to $x=\xi w, y=(1-\xi) w, z=1-w$, then integrate over the w variable first and over the ξ second. Here is a couple of integrals I did this way you might find useful:

$$
\begin{align*}
& \iiint d x d y d z \delta(x+y+z-1) \times \frac{x y z}{(x y+x z+y z)^{3}}=\frac{1}{2} \\
& \iiint d x d y d z \delta(x+y+z-1) \times \frac{x y z}{(x y+x z+y z)^{3}} \log \frac{(x y+x z+y z)^{3}}{(x y+x z+y z-x y z)^{2}}=-\frac{3}{4} . \tag{11}
\end{align*}
$$

