1. First, a bit of group theory. Consider a generic simple non-abelian Lie group G and its generators T^{a}. The (quadratic) Casimir operator $C_{2}=\sum_{a} T^{a} T^{a}$ commutes with all the generators and hence for any irreducible representation (r) of the group, C_{2} restricted to (r) is simply a unit matrix times a number $C(r)$. In other words, if $T_{(r)}^{a}$ is a matrix of the generator T^{a} in the representation (r), then $\sum_{a} T_{(r)}^{a} T_{(r)}^{a}=C(r) \times \mathbf{1}$. For example, for the isospin group $S U(2)$, the irreps are characterized by the isospin I and $C(I)=I(I+1)$.
(a) By symmetry, for any complete representation (r) of the group,

$$
\begin{equation*}
\operatorname{tr}_{(r)}\left(T^{a} T^{b}\right) \equiv \operatorname{tr}\left(T_{(r)}^{a} T_{(r)}^{b}\right)=R(r) \delta^{a b} \tag{1}
\end{equation*}
$$

for some coefficient $R(r)$. Show that for any irreducible representation,

$$
\begin{equation*}
\frac{R(r)}{C(r)}=\frac{\operatorname{dim}(r)}{\operatorname{dim}(G)} \tag{2}
\end{equation*}
$$

In particular, for the $S U(2)$ group, this formula gives $R(I)=\frac{1}{3} I(I+1)(2 I+1)$.
(b) Suppose the first three generators of G generate an $S U(2)$ subgroup. Show that if a representation (r) of G decomposes into several $S U(2)$ multiplets of isospins $I_{1}, I_{2}, \ldots, I_{n}$, then

$$
\begin{equation*}
R(r)=\sum_{i=1}^{n} \frac{1}{3} I_{i}\left(I_{i}+1\right)\left(2 I_{i}+1\right) . \tag{3}
\end{equation*}
$$

(c) Now consider the $S U(N)$ group with an obvious $S U(2)$ subgroup of matrices acting on the first two components of a complex N-vector. The fundamental representation (N) of the $S U(N)$ decomposes into one doublet and $(N-2)$ singlets of the $S U(2)$ subgroup, hence

$$
\begin{equation*}
R(N)=\frac{1}{2} \quad \text { and } \quad C(N)=\frac{N^{2}-1}{2 N} \tag{4}
\end{equation*}
$$

Show that the adjoint representation of the $\operatorname{SU}(N)$ decomposes into one $S U(2)$
triplet, $2(N-2)$ doublets and $(N-2)^{2}$ singlets and hence

$$
\begin{equation*}
R(\operatorname{adj})=C(\operatorname{adj}) \equiv C(G)=N \tag{5}
\end{equation*}
$$

Hint: $(N) \times(\bar{N})=(\operatorname{adj})+(1)$.
(d) The symmetric and the anti-symmetric 2-index tensors form irreducible representations of the $S U(N)$ group. Find out the decomposition of these irreps under an $S U(2) \subset S U(N)$ and calculate their respective R factors.
2. And now let's apply group theory to a physical process of quark-antiquark pair production in Quantum ChromoDynamics (QCD). Specifically, let us focus on the $u \bar{u} \rightarrow d \bar{d}$ process so there is only one tree-level diagram contributing to this process. Draw this diagram and calculate the amplitude, then sum/average the $|\mathcal{M}|^{2}$ over both spins and colors of the final/initial particles and calculate the total cross section. For simplicity, you may neglect the quark masses.

Note that the $u \bar{u} \rightarrow d \bar{d}$ pair production in QCD is very similar to the $e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}$pair production in QED, so the only new aspect of this problem is summing over the colors.
3. Next, consider a scalar analogue of QCD or more generally a theory of Yang-Mills fields A_{μ}^{a} and complex scalars Φ_{i} in some representation (r) of the gauge group G.
(a) Write down the Lagrangian and the Feynman rules of this theory.

Next, consider the annihilation process $\Phi+\Phi^{*} \rightarrow 2$ gauge bosons. At the tree level, there are four Feynman diagrams contributing to this process.
(b) Draw the diagrams and write down the tree-level annihilation amplitude.

As discussed in class, amplitudes involving the non-abelian gauge fields satisfy a weak form of the Ward identity: On-shell Amplitudes involving a longitudinally polarized gauge boson vanish, provided all other gauge bosons are transversely polarized. In other words,

$$
\begin{gathered}
\mathcal{M} \equiv e_{1}^{\mu_{1}} e_{2}^{\mu_{2}} \cdots e_{n}^{\mu_{n}} \mathcal{M}_{\mu_{1} \mu_{2} \cdots \mu_{n}}(\text { momenta })=0 \\
\text { when } e_{1}^{\mu} \propto k_{1}^{\mu} \quad \text { but } e_{2}^{\nu} k_{2 \nu}=\cdots=e_{n}^{\nu} k_{n \nu}=0
\end{gathered}
$$

(c) Verify this identity for the scalar annihilation amplitude.
4. To convert the annihilation amplitude into a cross-section we need to sum / average over the colors of all the particles. As a first step in this direction, it's convenient to write the amplitude as

$$
\begin{equation*}
\mathcal{M}(j+i \rightarrow a+b)=F \times\left\{T^{a}, T^{b}\right\}_{j}^{i}+i G \times\left[T^{a}, T^{b}\right]_{j}^{i} \tag{6}
\end{equation*}
$$

where j is the 'color' index of the scalar particle belonging to some representation (r) of the gauge group G, i is the color index of the scalar anti-particle belonging to the conjugate representation (\bar{r}), and a and b are the color indices of the gauge bosons belonging to the adjoint representation.
(a) Show that the annihilation amplitude indeed has form (6) and write down the coefficients F and G as explicit functions of the particles momenta and polarizations.
(b) Next, let us sum the $|\mathcal{M}|^{2}$ over the gauge boson's colors and average over the scalars' colors. Show that

$$
\begin{equation*}
\frac{1}{\operatorname{dim}^{2}(r)} \sum_{i j} \sum_{a b}|\mathcal{M}|^{2}=\frac{C(r)}{\operatorname{dim}(r)} \times\left(4 C(r) \times|F|^{2}+C(\operatorname{adj}) \times\left(|G|^{2}-|F|^{2}\right)\right) \tag{7}
\end{equation*}
$$

In particular, for scalars in the fundamental representation of the $S U(N)$ gauge group,

$$
\begin{equation*}
\frac{1}{N^{2}} \sum_{i j} \sum_{a b}|\mathcal{M}|^{2}=\frac{N^{2}-1}{2 N^{2}}\left(\frac{N^{2}-2}{N}|F|^{2}+N|G|^{2}\right) \tag{8}
\end{equation*}
$$

(c) Evaluate F and G in the center of mass frame. In this frame, the vector particles' polarizations $e_{1,2}^{\mu}=\left(0, \mathbf{e}_{1,2}\right)$ are purely spatial and transverse to the vectors momenta $\pm \mathbf{k}$. For simplicity, use planar rather than circular polarizations.
(d) Finally, calculate the (polarized, partial) cross-section for the annihilation process.

