
QED Vertex Correction: Working through the Algebra

At the one-loop level of QED, the 1PI vertex correction comes from a single Feynman

diagram

(1)

thus

ieΓµ
1 loop(p

′, p) =

∫

reg

d4k

(2π)4
−igνλ

k2 + i0
× ieγν ×

i

6p′+ 6k −m+ i0
× ieγµ ×

i

6p+ 6k −m+ i0
× ieγλ

= e3
∫

reg

d4k

(2π)4
N µ

D

(2)

where

N µ = γν(6k+ 6p′ +m)γµ(6k+ 6p+m)γν (3)

and

D = [k2 + i0]× [(p+ k)2 −m2 + i0]× [(p′ + k)2 −m2 + i0]. (4)

Using Feynman parameter trick, we re-write the denominator as

1

D
=

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)
2

[

x((p+ k)2 −m2) + y((p′ + k)2 −m2) + z(k2) + i0
]3

(5)
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and then expand

x((p+ k)2 −m2) + y((p′ + k)2 −m2) + z(k2) = ℓ2 − ∆ (6)

where

ℓ = k + xp + yp′ (7)

and

∆ = (xp + yp′)2 + x(m2 − p2) + y(m2 − p′2) = (1− z)2m2 − xyq2 〈〈on shell〉〉 (8)

Therefore

Γµ
1 loop(p

′, p) = −2ie2
1

∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

reg

d4ℓ

(2π)4
N µ

[

ℓ2 −∆+ i0
]3

, (9)

and now we need to simplify the numerator (3) in the context of this monstrous integral.

The first step is obvious: Let us get rid of the γν and γν factors using the γ matrix algebra,

eg, γν 6 aγν = −2 6 a, etc.. However, in order to allow for the dimensional regularization, we

need to re-work the algebra for an arbitrary spacetime dimension D where γνγν = D 6= 4.

Consequently,

γν 6aγν = −2 6a + (4−D) 6a,

γν 6a 6bγν = 4(ab) − (4−D) 6a 6b,

γν 6a 6b 6cγν = −2 6c 6b 6a + (4−D) 6a 6b 6c,

(10)

and therefore

N µ = −2m2γµ + 4m(p′+p+2k)µ − 2(6p+ 6k)γµ(6p′+ 6k) + (4−D)(6p′+ 6k−m)γµ(6p+ 6k−m).

(11)

Next, we re-express the right hand side here in terms of the Feynman’s loop momentum ℓ

rather than k using eq. (7). Expanding the result in powers of ℓ, we get quadratic, linear and
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ℓ–independent terms, but the linear terms fo not contribute to the
∫

dDℓ integral because they

are odd with respect to ℓ → −ℓ while everything else in that integral is even. Consequently,

in the context of eq. (9), we may neglect the linear terms, thus

N µ ∼= −2m2γµ + 4m(p + p′ − 2xp− 2yp′)µ

− 2 6ℓγµ6ℓ − 2(6p− x 6p− y 6p′) γµ (6p′ − x 6p− y 6p′)

+ (4−D) 6ℓγµ6ℓ + (4−D)(6p′ − y 6p′ − x 6p−m) γµ (6p− x 6p− y 6p′ −m)

= −2m2γµ + 4mz(p′ + p)µ + 4m(x− y)qµ − (D − 2) 6ℓγµ6ℓ

− 2(z 6p′ + (x− 1) 6q) γµ (z 6p+ (1− y) 6q)

+ (4−D)(z 6p′ + x 6q −m) γµ (z 6p− y 6q −m)

(12)

where the second equality here follows from p′ − p = q and x+ y + z = 1.

Now, let make use of the external fermions being on-shell. This means more than just

p2 = p′2 = m2: Effectively, we sandwich the vertex ieΓµ between Dirac spinors ū(p′) on

the left and u(p) on the right. The two spinors satisfy the appropriate Dirac equations, and

hence any term in Γµ something×6p is equivalent to same thing×m because 6pu(p) = mu(p),

and likewise any term of the form 6 p′ × something is equivalent to m × same thing because

ū(p′) 6p′ = ū(p′)m. Consequently, the terms on the last two lines of eq. (12) are equivalent to

(z 6p′ + (x− 1) 6q) γµ (z 6p+ (1− y) 6q) ∼= (zm+ (x− 1) 6q) γµ (zm+ (1− y) 6q)

(z 6p′ + x 6q −m) γµ (z 6p− y 6q −m) ∼= ((z − 1)m+ x 6q) γµ ((z − 1)m− y 6q).
(13)

Let us combine these two expressions with respective coefficients −2 and 4−D (cf. eq. (12))

and group similar terms together. Making use of

6qγµ = qµ + iσµνqν and γµ6q = qµ − iσµνqν , (14)

we obtain

m2γµ×
(

−2z2 + (4−D)(1− z)2
)

+ 6qγµ6q×
(

2(1− x)(1− y)− (4−D)xy
)

+ mqµ×(x− y)
(

−2z − (4−D)(1− z)
)

+ imσµνqν×
(

2z(2− x− y)− (4−D)(1− z)(x+ y)
)

,

(15)
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and hence

N µ ∼= −(D − 2) 6ℓγµ6ℓ + 4mz(p′ + p)µ

+ m2γµ ×
(

−2− 2z2 + (4−D)(1− z)2
)

+ 6qγµ6q ×
(

2(1− x)(1 − y)− (4−D)xy
)

+ mqµ × (x− y)
(

4− 2z − (4−D)(1− z)
)

+ imσµνqν ×
(

2z(2− x− y)− (4−D)(1− z)(x+ y)
)

.

(16)

Furthermore, in the context of the Dirac sandwich ū(p′)Γµu(p) we have

6qγµ6q = 2qµ 6q − q2γµ ∼= −q2γµ (17)

because ū(p′) 6qu(p) = 0, and also the Gordon identity

(p′ + p)µ ∼= 2mγµ − iσµνqµ . (18)

Therefore, re-grouping terms and making use of x+ y + z = 1, we obtain

N µ ∼= −(D − 2) 6ℓγµ6ℓ − m2γµ ×
(

2(1− 4z + z2)− (4−D)(1− z)2
)

− q2γµ ×
(

2(z + xy)− (4−D)xy
)

− imσµνqν × (1− z)
(

2z + (4−D)(1− z)
)

+ mqµ × (x− y)
(

4− 2z − (4−D)(1− z)
)

.

(19)

To further simplify this expression, let us go back to the symmetries of the integral (9).

The integral over the Feynman parameters, the integral
∫

dDℓ, and the denominator [l2−∆]3

are all invariant under the parameter exchange x ↔ y. In eq. (19) for the numerator, the first

two lines are invariant under this symmetry, but the last line changes sign. Consequently,

only the first two lines contribute to the integral (9) while the third line integrates to zero

and may be disregarded.
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Finally, thanks to the Lorentz invariance of the
∫

dDℓ integral,

ℓλℓν ∼= gλν ×
ℓ2

D
, (20)

and hence

6ℓγµ6ℓ = γλγµγν × ℓλℓν ∼= γλγµγν × gλν
ℓ2

D
= −(D − 2)γµ ×

ℓ2

D
. (21)

Plugging this formula into eq. (19) and grouping terms according to their γ–matrix structure,

we arrive at

N µ = N1 × γµ − N2 ×
iσµνqν

2m
(22)

where

N1
∼=

(D − 2)2

D
ℓ2 − 2(1− 4z + z2)m2 − 2(z + xy)q2

+ (4−D)((1− z)2m2 + xyq2), (23)

N2
∼= 4z(1 − z)m2 + 2(4−D)(1− z)2m2. (24)

Note that splitting the numerator according to eq. (22) is particularly convenient for calcu-

lating the electron’s form factors:

Γµ
1 loop

= F
1 loop
1 (q2)× γµ + F

1 loop
2 (q2)×

iσµνqν

2m
, (25)

F
1 loop
1 (q2) = −2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N1

[

ℓ2 −∆+ i0
]3

, (26)

F
1 loop
2 (q2) = +2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N2

[

ℓ2 −∆+ i0
]3

. (27)
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