
PHY–396 K. Solutions for problems 1 and 2 of set #5.

Problem 1(a):

The conjugacy relations Â†k,λ = −Â−k,λ, Ê†k,λ = −Ê−k,λ follow from hermiticity of the Â(x)

and Ê(x) quantum fields and from the third eq. (6) for the polarization vectors:

Â†k,λ =

∫
d3x e+ikxeλ(k) · Â†(x) =

∫
d3x e−i(−k)x(−e∗λ(−k)) · Â = −Â−k,λ , (S.1)

and likewise

Ê†k,λ =

∫
d3x e+ikxeλ(k) · Ê†(x) =

∫
d3x e−i(−k)x(−e∗λ(−k)) · Ê = −Ê−k,λ , (S.2)

The equal-time commutation relations follow from eqs. (1): Obviously,

[Âk,λ, Âk′,λ′ ] = 0, [Êk,λ, Êk′,λ′ ] = 0. (S.3)

Less obviously,

[Âk,λ, Ê
†
k′,λ′ ] =

∫
d3x

∫
d3y e−ikx

(
e∗λ(k)

)i × e+ik′y
(
eλ′(k′)

)j × [Âi(x), Êj(y)]

=

∫
d3x

∫
d3y e−ikx

(
e∗λ(k)

)i × e+ik′y
(
eλ′(k′)

)j × (−i)δ(3)(x− y)δij

= −i
∫
d3x e−i(k−k

′)x ×
(
e∗λ(k) · eλ′(k′)

)
= −i(2π)3δ(3)(k− k′)×

(
e∗λ(k) · eλ′(k)

)
= −i(2π)3δ(3)(k− k′)× δλ,λ′ ,

(S.4)

or equivalently,

[Âk,λ, Êk′,λ′ ] = +i(2π)3δ(3)(k + k′)× δλ,λ′ . (S.5)
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Problem 1(b):

There are four terms in the Hamiltonian density (2), so let us consider them one by one.

Combining Fourier transform with decomposition into polarization modes it is easy to see

that in light of eq. (4), ∫
d3x Ê2(x) =

∫
d3k

(2π)3

∑
λ

Ê†k,λÊk,λ (S.6)

and likewise ∫
d3x Â2(x) =

∫
d3k

(2π)3

∑
λ

Â†k,λÂk,λ . (S.7)

Furthermore, using eq. (5) we have

∇× Â(x) =

∫
d3k

(2π)3

∑
λ

eikx
(
ik× eλ(k) = λ|k|eλ(k)

)
Âk,λ (S.8)

and hence ∫
d3x

(
∇× Â(x)

)2
=

∫
d3k

(2π)3

∑
λ

λ2k2 Â†k,λÂk,λ . (S.9)

Finally, the first eq. (6) gives us

∇ · Ê(x) =

∫
d3k

(2π)3

∑
λ

eikx
(
ik · eλ(k) = i|k|δλ,0

)
Êk,λ (S.10)

and hence ∫
d3x

(
∇ · Ê(x)

)2
=

∫
d3k

(2π)3
k2Ê†k,0Êk,0 . (S.11)

In light of all these formulæ, we assemble the Hamiltonian (2) as

Ĥ =

∫
d3k

(2π)3

∑
λ

((
1

2
+

k2

2m2
δλ,0 =

Ck,λ

2

)
Ê†k,λÊk,λ +

(
m2 + λ2k2

2
=

ω2
k

2Ck,λ

)
Â†k,λÂk,λ

)
.

(8)
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Problem 1(c):

Given eqs. (S.3) and (S.5), we have

[âk,λ, âk′,λ′ ] = −iωk

√
Ck′,λ′

Ck,λ

(
[Âk,λ, Êk′,λ′ ] = (+i)(2π)3δ(3)(k + k′)δλ,λ′

)
+ −iωk′

√
Ck,λ

Ck′,λ′

(
[Êk,λ, Âk′,λ′ ] = (−i)(2π)3δ(3)(k + k′)δλ,λ′

)
= ωk × (2π)3δ(3)(k + k′)δλ,λ′ − ωk′ × (2π)3δ(3)(k + k′)δλ,λ′ = 0

(S.12)

and likewise [â†k,λ, â
†
k′,λ′ ] = 0. On the other hand,

[âk,λ, â
†
k′,λ′ ] = +iωk

√
Ck′,λ′

Ck,λ

(
[Âk,λ, Ê

†
k′,λ′ ] = (−i)(2π)3δ(3)(k− k′)δλ,λ′

)
+ −iωk′

√
Ck,λ

Ck′,λ′

(
[Êk,λ, Â

†
k′,λ′ ] = (+i)(2π)3δ(3)(k− k′)δλ,λ′

)
= ωk × (2π)3δ(3)(k− k′)δλ,λ′ + ωbk′(2π)3δ(3)(k− k′)δλ,λ′

= 2ωk × (2π)3δ(3)(k− k′)δλ,λ′ .

(S.13)

Q.E .D.

Problem 1(d):

Expanding the operators âk,λ and â†k,λ according to eqs. (9), we have

â†k,λâk,λ =
ω2
k

Ck,λ
Â†k,λÂk,λ + Ck,λ Ê

†
k,λÊk,λ + iωk Ê

†
k,λÂk,λ − iωk Â

†
k,λÊk,λ (S.14)

and therefore

Ĥeq. (8) =

∫
d3k

(2π)3 2ωk

∑
λ

ωkâ
†
k,λâk,λ + ∆Ĥ (S.15)

where

∆Ĥ =

∫
d3k

(2π)3
iωk
2

∑
λ

(
Â†k,λÊk,λ − Ê†k,λÂk,λ

)
(S.16)

Thus, to prove eq. (10) we need to show that ∆Ĥ is a c-number constant.
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The trick here is to change the integration variable k → −k in the the first term in the

integrand of eq. (S.16) and then apply eqs. (S.1) and (S.2):

∫
d3k

(2π)3

∑
λ

iωk
2
Â†k,λÊk,λ =

∫
d3k

(2π)3

∑
λ

iωk
2
Â†−k,λÊ−k,λ =

∫
d3k

(2π)3

∑
λ

iωk
2
Â+k,λÊ

†
+k,λ .

(S.17)

Consequently

∆Ĥ =

∫
d3k

(2π)3

∑
λ

iωk
2

(
Âk,λÊ

†
k,λ − Ê†k,λÂk,λ ≡ [Âk,λ, Ê

†
k,λ]
)

=

∫
d3k

(2π)3

∑
λ

ωk
2

(2π)3δ(3)(k− k = 0)

≡ Evacuum

(S.18)

which is indeed a c-number constant, albeit divergent. Q.E .D.

Physically, the vacuum energy (S.18) is the net zero-point energy of all the oscillatory

modes of the vector field theory. This energy is infinite for two reasons, one having do do with

the infinite volume of space and the other with its perfect continuity. The infinite-volume

divergence of
∫
d3x of a constant vacuum energy density manifest itself via the (2π)3δ(3)(0)

factor, which is simply the Fourier transform of
∫
d3x(1). Indeed, had we quantized the theory

in a very large but finite box, we would have obtained the L3 volume factor in eq. (S.18) instead

of the delta function. In other words, the vacuum has energy density

Energy

Volume

∣∣∣∣
Vacuum

=

∫
d3k

(2π)3
3× ωk

2
. (S.19)

Alas, this integral diverges at large momenta so the vacuum energy density is also infinite. This

is a generic problem of all Quantum Field Theories in a perfectly continuous space (and hence

unlimitedly high momenta). Ultimately, this problem should be resolved by the fundamental

theory of physics at ultra-short distances, whatever such theory might be.

Fortunately, for all practical purposes, we may safely disregard any c-number constant

term in the Hamiltonian, even if such term is infinite — and that is exactly what we shall do

in this course!
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Problem 1(e):

Reversing eqs. (9), we have

Âk,λ =

√
Ck,λ

2ωk

(
âk,λ − â

†
−k,λ

)
(S.20)

and therefore

Â(x) =

∫
d3k

(2π)3
eikx

2ωk

∑
λ

√
Ck,λ eλ(k)

(
âk,λ − â

†
−k,λ

)
=

∫
d3k

(2π)3
e+ikx

2ωk

∑
λ

√
Ck,λ eλ(k) âk,λ −

∫
d3k

(2π)3
e−ikx

2ωk

∑
λ

√
Ck,λ eλ(−k) â+k,λ

=

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e+ikxeλ(k) âk,λ + e−ikxe∗λ(k) â†k,λ

)
.

(S.21)

It remains to work out the time dependence in the Heisenberg picture. For the free

field governed by Hamiltonian (10), âk,λ(t) = e−iωtâk,λ(0) and â†k,λ(t) = e+iωtâ†k,λ(0) where

ω ≡ ωk. Substituting this time dependence into eq. (S.21) and switching to relativistic

notations, we immediately arrive at

Â(x) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e−ikxeλ(k) âk,λ(0) + e+ikxe∗λ(k) â†k,λ(0)

)
k0=+ωk

. (11)

Q.E .D.

Problem 1(f):

The 3–scalar field Â0(x) is governed by eqs. (3) and (S.10),

Â0(x, t) =

∫
d3k

(2π)3
−i|k|
m2

eikx Êk,0(t). (S.22)

Reversing eqs. (9) for the Êk,λ operator, we have

Êk,λ =
i/2√
Ck,λ

(
âk,λ + â†−k,λ

)
, (S.23)
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and in particular

Êk,0 =
im

2ωk

(
âk,0 + â†−k,0

)
.

Hence,

Â0(x) =

∫
d3k

(2π)3 2ωk

|k|
m
e+ikx

(
âk,0 + â†−k,0

)
=

∫
d3k

(2π)3 2ωk

|k|
m
e+ikx âk,0 +

∫
d3k

(2π)3 2ωk

|k|
m
e−ikx â†+k,0

=

∫
d3k

(2π)3 2ωk

|k|
m

(
e+ikx âk,0 + e−ikx â†k,0

)
.

(S.24)

As to the time dependence, it works exactly as in eq. (11) for the vector field, thus

Â0(x) =

∫
d3k

(2π)3 2ωk

|k|
m

(
e−ikx âk,0(0) + e+ikx â†k,0(0)

)
k0=+ωk

. (S.25)

In light of similarity between eqs. (11) and (S.25), we may combine them into a single eq. (12)

where

f(k, λ) = Ck,λ eλ(k) and f0(k, λ) =
|k|
m
δλ,0 (S.26)

or equivalently, (13).

Problem 1(g):

According to eq. (12),

(∂2 +m2)Âµ(x) =

∫
d3k

(2π)3 2ωk

∑
λ

(
(−k2 +m2)e−ikxfµ(k, λ) âk,λ(0) (S.27)

+ (−k2 +m2)e+ikxf∗µ(k, λ) â†k,λ(0)
)
k0=+ωk

,

which vanishes because (−k2 +m2) = 0 for k0 = ωk. Likewise,

∂µÂ
µ(x) =

∫
d3k

(2π)3 2ωk

∑
λ

(
e−ikx

(
ikµf

µ(k, λ)
)
âk,λ(0) (S.28)

+ e+ikx
(
−ikµf∗µ(k, λ)

)
â†k,λ(0)

)
k0=+ωk

,

which vanishes because kµf
µ(k, λ) = 0 for all polarizations λ. Q.E .D.
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Problem 2(a):

The simplest way to prove this lemma is by direct inspection, component by component:

∑
λ

f i(k, λ)f∗j(k, λ) =
∑
λ

eiλ(k)e∗jλ (k) +
k2

m2
ei0(k)e∗j0 (k) = δij +

kikj

m2
;

∑
λ

f i(k, λ)f∗0(k, λ) = f i(k, 0)f∗0(k, 0) =
kiωk
m2

;

∑
λ

f0(k, λ)f∗0(k, λ) =
∣∣f0(k, 0)

∣∣0 =
k2

m2
= −1 +

ω2
k

m2
.

(S.29)

Alternatively, we may use the fact that the three four-vectors fµ(k, λ) (fixed k, λ = −1, 0,+1)

are orthogonal to each other and also to the kµ = (ωk,k). Furthermore, each
(
f(k, λ)

)2
= −1.

Consequently, the symmetric matrix (in Lorentz indices µ, ν) on the left hand side of eq. (14)

has to be (minus) the projection matrix onto four-vectors orthogonal to the kµ, and that is

precisely the matrix appearing on the right hand side of eq. (14) (note k2 = m2).

Problem 2(b):

The operator product Âµ(x)Âν(y) comprises ââ, â†â†, â†â and ââ† terms. The first three

kinds of terms have zero matrix elements between vacuum states while 〈0| âk,λâ
†
k′,λ′ |0〉 =

2ωk(2π)3δ(3)(k− k′)δλ,λ′ . Consequently,

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

∑
λ

[
e−ik(x−y) fµ(k, λ)f∗ν(k, λ)

]
k0=+ωk

=

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − 1

m2

∂

∂xµ
∂

∂xν

)∫
d3k

(2π)3
1

2ωk

[
e−ik(x−y)

]
k0=+ωk

≡
(
−gµν − 1

m2

∂

∂xµ
∂

∂xν

)
D(x− y).

(15)

7



Problem 2(c):

Starting with eq. (15), we immediately see that for the un-modified time-ordering,

〈0|TÂµ(x)Âν(y) |0〉 = θ(x0 − y0) 〈0| Âµ(x)Âν(y) |0〉 + θ(y0 − x0) 〈0| Âν(y)Âµ(x) |0〉

= θ(x0 − y0)
(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
D(x− y)

+ θ(y0 − x0)
(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
D(y − x).

(S.30)

On the other hand,

GF (x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x), (S.31)

and hence

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
GF (x− y) = θ(x0 − y0)

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
D(x− y)

+ θ(y0 − x0)
(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
D(y − x)

− iδµ0δν0δ(4)(x− y)
(S.32)

where the δ-function term arises from taking time derivatives of the θ-functions. (cf. expla-

nation of (∂2 + m2)GF (x − y) = −iδ(4)(x − y) in class.) Comparing eqs. (S.30) and (S.32),

we obtain

〈0|TÂµ(x)Âν(y) |0〉 =

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
GF (x− y) − iδµ0δν0δ(4)(x− y) (S.33)

and hence

〈0|T∗Âµ(x)Âν(y) |0〉 =

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
GF (x− y). (S.34)

This proves the first line of eq. (16); the second line follows from the momentum-space form
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of the scalar propagator

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)[
GF (x− y) =

∫
d4k

(2π)4
ie−ik(x−y)

k2 −m2 + i0

]

=

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
ie−ik(x−y)

k2 −m2 + i0
.

(S.35)

Q.E .D.
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