Spin—Statistics Theorem

Relativistic causality requires quantum fields at two spacetime points = and y separated by
a space-like interval (z — y)? < 0 to either commute or anticommute with each other. The
spin—statistics theorem says that the fields of integral spins commute (and therefore must
be quantized as bosons) while the fields of half-integral spin anticommute (and therefore must
be quantized as fermions). The spin-statistics theorem applies to all quantum field theories

which have:
1. Special relativity, i.e. Lorentz invariance and relativistic causality;
2. Positive energies of all particles;
3. Hilbert space with positive norms of all states.

The theorem is valid for both free or interacting quantum field theories, and in any space-
time dimension D > 2. In these notes I shall prove the theorem for the free fields in four
dimensions and outline its generalization to D # 4; proving the theorem for the interactive

fields is too complicated for this class.

Consider a generic Lorentz multiplet ¢ 4(x) of complex quantum fields describing particles of
spin j and mass M. In general, the multiplet could be reducible A € (i i0)®0y 4y )+,

but all the irreducible components must have

=7 <4< G+ and (—DF(-1)¥ = (~1)¥. (1)

Free fields satisfy some kind of linear equations of motion which have plane-wave solutions

with p? = M2, Let p° = +Ep = +v/p? + M? and let
e P fa(p,s) and  e"PThy(p,s) (2)

be respectively the positive-frequency and negative-frequency plane-wave solutions. By the

* The spin-statistics theorem applies to massive and massless particles alike, but for simplicity of discus-
sion we assume M # 0.



CPT theorem

ha(p,s) = fa(+p,—s) x 25(=1)% @D (3)

where the i%® factor accompanies the spin reversal and the (—1)% (4 sign is the (jF,;7)
representation of the proper-but-not-orthochronous Lorentz transform PT : z# — —zt7 For

the complex conjugate plane waves, we have

Wi(p.s) = Fi(4p.—s) x (=)* (=) (D (4)

where the last factor is (—1)2j+(;1) = (=1)%" (4 because the conjugation exchanges the j*

and the j~ of a Lorentz multiplet.

The relation between particle’s spin and statistics follows from the spin sums
def % def
Fasp) = D fa(.s) fh(p,s) and Hyp(p Z ha(p,s)h(p,s).  (5)
S

In a Lorentz—invariant QF T, these sums must be Lorentz—covariant functions of the particle’s

momentum, thus
ZMA ) M (L) Fop(p),

(6)
= Z ML) MP(L) Hep()

And since we are only interested in the on-shell momenta with fixed p#p, = M 2 the func-
tional form these covariant functions of p# is determined by the Spin(3,1) analogue of the

Wigner—Eckard theorem.

t For example, for the (3,0) & (0, 3) multiplet of Dirac spinor fields, the constant spinors ua(p,s) =

fa(p,s) and va(p, s) = ha(p, s) satisfy
va(p,s) = +( E— pans)A =+ (\/E - po (i286—s))A = +i* ua(p, —s)

or A € (5, the left-hande eyl spinor components), but
fAéO he left-handed Weyl spi b

va(p;s) = —( E+pans)A = - (\/E+p0' (iQsﬁ—s))A = —i®ua(p,—s)

for A € (0, %) (the right-handed Weyl spinor components); in both cases, the i?* factor comes from

ns = i%%¢_, while the chirality-dependent sign between the u 4 and the v4 components is the (—1)%" (4
factor.



In three Euclidean dimensions, the Wigner—Eckard theorem usually concerns the rotational
properties of matrix elements of vector or tensor operators between states of given angular
momenta, but it can be recast in terms of rotationally-covariant functions of a vector v.
Consider a covariant matrix of functions @, ;(v) where the indices a and b run over compo-
nents of some (possibly reducible) spin multiplet, a,b € (j1) @ (j2) ® ---. According to the
Wigner—Eckard theorem,

+/
qe(v) Z v'Yy m(n) x Clebbsch(a, bl¢, m), (7)

| m=—/{

(a)+4(b)
Qup(Vv=ovn) =
a)—j(b)

J
=13

where ¢y(v) depend only on ¢ and the magnitude v of the vector and the spherical harmonics
0¥y 1 (n) are homogeneous polynomials (degree £) of the Cartesian components vy, v, and v,.
For a vector of fixed magnitude v? = v? the ¢ coefficients are constants, hence each Qap

is effectively a polynomial of (vg,v,,v;) comprising terms of net degree ¢ ranging from
7(a) = 5(b)] to j(a) + j(b).

In four Minkowski dimensions we have a similar situation, except for the spin group being
SL(2,C) instead of SU(2), hence A, B € (ji,j;) ® (j5,j5 ) @+ -. Also, the Lorentz vector
multiplet has j© = j~ = % (unlike the 3D vector multiplet which has ¢ = 1) and consequently
the Minkowski analogues Y+ - (p*/M) of the spherical harmonics do not have separate
integer-valued indices ™ and ¢~ but rather a common index J = j© = j~ which takes both
integer and half-integer values. Hence, the Wigner-Eckard theorem for Lorentz-covariant

matrices F 4 5(p) and H 45(p) says:

Jmax
Fagp) = > f1(M) > MY - (0"/M) x Clebbsch(A, BlJ,m", J,m™),
J=Jmin —J<mt<J
—J<m—<J
Jmax
Hap(p) = D hy(M) > MYV m (p"/M) x Clebbsch(A, B|.J,m", J,m™),
J=Jmin —J<mt<J
—J<m—<J

(8)

where M is the particle’s mass (pt'p, = M 2), the indices J, m* and m™~ are all integral or



all half-integral according to
()Y = (-1 = (-1 = (-)F W(E)F B = (WD (H B (g)

and in the sum over J,

Juin = max (|7 (A) =77 (B)], 157 (A) =5 (B)])

_ _ (10)
Jmax = min ((57(4) +57(B)), (57 (4) + 57 (B))).

Similar to their 3D counterparts, the 4D “spherical harmonics” M*/ Y .+ .- (p#/M) are
homogeneous polynomials of the 4-Momentum components p°, p®, p¥, p?, although in 4D the
polynomial degree is 2J rather than ¢. Consequently, for a fixed particle mass M, all spin

sums F 45(p) and ‘H 45(p) can be written as polynomials of the po,px,py,pz.

Now, once we have written the spin sums (5) as polynomials of the p* components, we can
analytically continue these polynomials to negative energies p? = —FE}, or even to complex
4-momenta satisfying p#p, = M 2. This analytic continuation allows us to compare the spin
sums at opposite 4—-momenta +p# = (+F,+p) and —p* = (—FE, —p), and because every
term in each particular polynomial (8) has the same degree 2J modulo 2, it follows that the

whole polynomial is either odd or even according to eq. (10), thus

Fapp") = ()% D02 OF 54,
Hap(—p") = (=1 D (1) Bp o (1),

(11)

Finally, for physical momenta (real p* = (+Ep, p)), the CPT theorem (cf. egs. (3) and (4))

relates the positive and the negative frequency spin sums to each other according to
Hap(p") = Fap") x (~1)¥ D@, (12)

Analytic continuation of the spin sums as polynomials of p extends eq. (12) to any complex

momenta, hence in light of egs. (11),
Hap(—p") = Fap(tp) x (-1 B2 "), (13)

According to eq. (1), the sign factor in the above formula does not depend on a particular



field component gZ)TB but only on the particle’s spin:

Hag(—p") = +F,5(+p") for particles of integral spin,
(14)
Hap(—p") = —F, 5(+p!) for particles of half-integral spin.

It turns out that this little red spin-dependent sign makes a big difference for the particles’

statistics.

*x k%

A free quantum field is a superposition of plane-wave solutions with operatorial coefficients,

thus

A~ 3 . . ~
o) = [0 5pe S [ b s alps) + T (.) ()]

(2m)3 2B, PO=+Ep

d3 , s (15)
ot _ p 1 —ipyp i +ipy fx Al
¢5W) /(27)3 TR ; [e Ws(p,s)b(p,s) + e ™ fi(p,s)a (p, 8)]p0—+EP .

(Without loss of generality we assume complex fields and charged particles; for the neutral
particles we would have b=aand bl = al.) Regardless of statistics, positive particle energies
require @' (p, s) and Al (p, s) to be creation operators while a(p, s) and E(p, s) are annihilation

operators, thus
at(p,s)10) = [L(p.s,+).  D'(p,9)[0) = [L(p,s, =),  a(p.s)|0) = b(p,s)[0) = 0,
and hence, in a Fock space of positive-definite norm

(Ola(p,s)al(p',s')[0) = (0]b(p,s)b (D), ) [0) = +2Ep(27)%6®) (p —p')dssw  (17)

while all the other “vacuum sandwiches” of two creation or annihilation operators vanish
identically. Consequently, regardless of particles’ statistics, vacuum expectation values of
products of two fields at distinct points  and y are given by

3 —ip(z—y)
d°p e "

(01 da@) D(y) 0) = */(%)3 2B,

ZfA(pas) fE(Pa S) (18)

and



d3p e—l—zpa: Y)

0150 @) 10) = + [ 55 a9

And at this point, we can use the spin sums (5) and their polynomial dependence on the

particle’s 4-momenta to calculate

o, = Fanl+is) D =)

A ~ 3 .
(01 6a(2) B () [0) = / (;lT‘;’g % e~ F, o)

where

9

p'=+Ep

_ d’p 1 —ip(z—y)
Dla=v) ‘/(%)3% ‘

and likewise

PO=+E, - HAB(_iam) D(y - :E)
(21)

. . d3 .
01550)aa)10) = [ 55 5 P 150)

As explained in class, for a space-like distance between points « and y, D(y—x) = +D(x—vy).
At the same time, the differential operators F,5(+i0;) and H 4,5(—10,) are related to each

other according to eq. (14). Therefore, regardless of particles’ statistics, for (z —y)? < 0

(0] gZSA(:c)$ (y)|0) = +(0] <Z>%(y) ¢ 4(x)]0) for particles of integral spin,

(0 ga(2)

. . (22)
(y)]0) = —(0| gb%(y) ¢ 4(x)|0) for particles of half-integral spin.

U:J\_" ml

On the other hands, | relativistic causality| requires for (x — y)2 <0

regardless of particle’s spin.  (23)

And the only way egs. (22) and (23) can both hold true at the same time if all particles of

integral spin are bosons and all particles of half-integral spin are fermions.



Indeed, for bosonic particles, the creation and annihilation operators commute with each

other except for

[d<p7 S>7 dT (plv Sl)] = +2EP (27T>35(3) (p - p/)és,s’ )

) ) (24)
b(p. ). b(p',s")] = —2Ep (2m)%6®) (p — p')dss |

and therefore the quantum fields commute or do not commute according to

R R 3
540 340] = [585 35, 2 (T MjD.) — I M0.9))

= Fap(i0:) D(x —y) — Hpp(—i0:) D(y — z)

= Fap(io) (D(x —y) — (=1)” D(y — x))
(25)

where j is the particle’s spin, cf. eq. (22). For particles of integral spin, this commutator
duly vanishes when points x and y are separated by a space-like distance. But for particles
of half-integral spin, the two terms on the last line of eq. (25) add up instead of canceling
cach other, and the fields ¢ 4(z) and Q%(y) fail to commute — which violates relativistic

causality. To avoid this violation, bosonic particles must have integral spins only.

Likewise, for fermionic particles, the creation and annihilation operators anticommute with

each other except for

{a(p,s),al (', s)} = +2B, (21)30®(p — p')ds.y

) ) (26)
{b(p,5),b(p",s")} = +2E, (21)*6®) (p — p')ds.s

and therefore the quantum fields anticommute or do not anticommute according to

~ ~ 3 . .
{oa@rihw} = [55 2; 2 (I alp ) p9) A ) p.9))
= Fap(i0z) (x —y) + Hap(—i0:) D(y — x)

= Fp(ids) (D(x —y) + (=1)¥ D(y —x)).
(27)
This anticommutator vanishes when (z — y)? < 0 for half-integral j but not for integral ;.

Hence, to maintain relativistic causality, fermionic particles must have half-integral spins

only.



I would like to conclude these notes with a few words about spin-statistics relations in
spacetime dimensions other than four. In any dimension D, quantum fields form multiplets
of the Spin(D — 1,1) Lorentz symmetry while massive particles form multiplets of the spin
symmetry Spin(D — 1). For D > 4, the multiplets are more complicated then in D = 4, but
they fall into the same two broad classes according to their behavior under rotations R(27)
by 27 under any spatial axis: The single-valued tensor multiplets for which R(27) = +1,
and the double-valued spinor multiplets for which R(27) = —1. The relation between spin

sums (5) follows this distinction:
Hap(=p") = Fap(+p") x R(27), (28)

although the proof is more complicated in higher dimensions. But but in any dimension,
the statistics follow the sign in eq. (28), thus particles invariant under 2m rotations must be

bosons while particles for which R(2mw) = —1 must be fermions.

For D = 3 (two space dimensions) the situation is more complicated. The Lorentz symmetry
Spin(2,1) = SL(2,R) has finite multiplets of quantized spin J = 0, %, 1, %,2, ..., but the
space rotation group SO(2) is abelian (1 generator only), so its multiplets are singlets of
arbitrary, un-quantized m;. If m; happens to be an integer or half-integer, then this particle
species can be quantized as a free quantum field of definite J = m; modulo 1, and the spin—
statistics theorem works as usual: Particles with integral m; are bosons while particles with
half-integral m; are fermions. The particles with fractional spins m; are more difficult to
quantize; they are neither bosons nor fermions but anyons obeying fractional statistics where
lo, B) = |3, @) x eF2™  depending on how the two particles are exchanged. But even in
this case, the statistics follows the spin: When the spin is fractional, the statistics has the

same fractional phase.



