Solve any three problems out of four:

1. A star has a planet on a circular orbit of radius 2 au (astronomical units). The planetary year is 4 Earth's years long. What is the mass of the star compared to the Sun's mass? (In other words, calculate the ratio $M_{\text {star }}^{\text {other }} / M_{\text {Sun }}$.)
2. A 1000 kg car and a 5000 kg truck collide on a very icy road. Before the collision, the car goes North at 60 MPH (miles per hour) while the truck goes South at 30 MPH . After the collision, the two entangled wrecks skid together on the frictionless ice. What is the velocity of this skid?
3. A meter-stick is balanced in the air on two vertical strings. One string - attached at the 40 cm mark - is suspended from the ceiling, and the other string - attached at the 10 cm mark - hangs down and supports a 50 g weight. Calculate the meter-stick's mass.

Note: Meter-stick's center of mass is in its middle, at the 50 cm mark.
Hint: Think of the upper string as the pivot point.
4. A 75 kg man walks up a steep hill at speed $1 \mathrm{~m} / \mathrm{s}$. The hill's elevation is 20% : for every 100 meters that the man walks, his elevation increases by 20 meters. How much mechanical power does the man expend on this uphill walk?

