
PHY–309K. Solutions for Problem set # 4.

Textbook problem 5.5:

Strictly speaking, the problem of gravity on a 200 kilometer (125 mile) mountain

is way too difficult for this class because a planet with a mountain that big would

have a different gravitational field than the almost-spherical Earth we live on. So

let’s rephrase the question and assume a 200 km ladder instead of a mountain, and

also assume that the ladder’s own mass is too small to create a noticeable gravity

of its own. Or more realistically, assume a stratospheric balloon floating 200 km

up in the (very thin) air. In any case, assume the Earth to be a perfect sphere and

consider your weight 200 km above the ground.

In general, gravitational fields near large bodies are quite complicated, but for

a spherically symmetric body the field outside the body is simply the same as if

the entire mass was in the body’s center. Thus, the gravitational field outside the

Earth is

g(r) =
GMEarth

r2
(1)

where r is the distance from the Earth’s center. At altitude h above the ground

r = h+REarth, hence g changes with the altitude according to

g(h) =
GME

(RE + h)2
. (2)

Consequently, your weight W = mg depends on your altitude according to

W (h) = m× g(h) = m×
GME

(RE + h)2
(3)

where m is your mass.
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Let us compare this weight with your weight on the surface

W (0) = m× g(0) (4)

where

g(0) =
GME

R2

E

≈ 9.8 m/s2. (5)

Dividing eq. (3) by eq. (4) we have

W (h)

W (0)
=

g(h)

g(0)
=

GME

(RE + h)2

/

GME

R2

E

=

(

RE

RE + h

)2

. (6)

In particular, at altitude h = 200 km

W (h)

W (0)
=

(

6378 km

6378 km + 200 km

)2

≈ 0.94 (7)

which means that your weight is 94% of your weight on the surface. In other words,

when you go 200 km up, your weight decreases by 6%.

For example, if you normally weigh 150 pounds, then 200 km up you would

weigh 0.94×150 lb = 141 lb, 9 pounds less than on the surface. This is a noticeable

difference, easily detectable by ordinary bathroom scales.

Note that the problem assumes you are standing in place at altitude h = 200 km

rather than orbiting up there in a space shuttle or other kind of spaceship. In an

orbiting spaceship, you would be in free fall and the inertial force due to spaceship’s

centripetal acceleration would precisely cancel your weight, hence you would feel

completely weightless. On the other hand, if you are standing up there on a ladder

or in a balloon’s gondola, there would be no inertial force and you you would feel

the gravitational field as it is at h = 200 km. This gravity is a little weaker than

on the surface, but only a little, so you would feel 94% of your normal weight.
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Non-textbook problem 1:

Titan is fairly spherical in shape, so your weight on the surface of Titan is given

by

W (onTitan) = m× g
T

= m×
GMT

R2

T

(8)

where m is your mass, g
T
is Titan’s gravity, MT is Titan’s mass, and RT is Titan’s

radius. Comparing this to your weight on Earth given by eqs. (4) and (5), we have

W (onTitan)

W (onEarth)
=

g
T

g
E

=
GMT

R2

T

/

GME

R2

E

=
MT

ME

/ (

RT

RE

)2

= 0.0226/0.4682 = 0.103.

(9)

In other words, you weight on Titan is only 10.3% of your weight on Earth. For

example, if you weigh 150 pounds on Earth, you weight on Titan would be only

15.5 pounds.

Non-textbook problem 2:

The year on another planet is the time the planet takes to make one orbit around

its star. For a circular orbit of radius R, we can calculate this time from the orbit

equation for the planet’s speed v,

GM⋆

R2
=

v2

R
=⇒ R× v2 = GM⋆ (10)

where M⋆ is the star’s mass. Using v = 2πR/T where T is the orbital period, we

find

R3
×

(

2π

T

)2

= GM⋆ (11)
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and hence the year is

T = 2π ×

√

R3

GM⋆

. (12)

For elliptical orbits, one needs calculus to calculate the orbital period, but the

result is fairly simple:

T = 2π ×

√

a3

GM⋆

(13)

where a is the semi-major axis of the planetary orbit. For a circular orbit, eq. (13)

reduces to eq. (12).

Now let’s compare eq. (13) for a planet orbiting another star to a similar

equation

TE = 2π ×

√

a3
E

GM⊙

(14)

for the Earth orbiting the Sun; here a
E
= 1 au is the radius (or rather semi-major

axis) of the Earth’s orbit and M⊙ is the Sun’s mass. Dividing eq. (13) by eq. (14)

we obtain

T

T
E

=

√

a3

GM⋆

/

√

a3
E

GM⊙

=

√

(

a

aE

)3 / (

M⋆

M⊙

)

, (15)

hence for the orbit of radius a = 2 au ≡ 2×aE around a star of mass M⋆ = 3×M⊙

we have

T

T
E

=
√

23/3 =
√

8/3 = 1.633. (16)

In other words, the planet’s year is 1.633 Earth years, or 596.5 Earth days, or

5.153× 107 seconds.
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Non-textbook problem 3:

A satellite of Mars with a circular orbit of radius R has period

T = 2π ×

√

R3

GMMars

, (17)

(cf. eq. (12)). An “arestationary” satellite has its period equal to 1 martian

day+night, thus T = TMD = 88775 s, hence

2π ×

√

R3

GMMars

= TMD . (18)

Solving this equation for the orbit’s radius, we have

R3

GMMars

=

(

TMD

2π

)2

(19)

and consequently

R = 3

√

GMMars × (TMD/2π)2

= 3

√

(6.67× 10−11m3/s2/kg)× (6.42× 1023 kg)× (88775 s/2π)2

= 2.045× 107 m = 20450km ≈ 12700 miles.

(20)
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