
PHY–309K. Solutions for Problem set # 5.

Textbook problem 6.5.A:

The impulse of a force action on a body changes its momentum by

∆P ≡ Pafter − Pbefore = I. (1)

In all three examples, the body stops moving, hence Pafter = 0 and therefore

I = −Pbefore = −Mv (2)

where v is the body’s velocity before the collision. As far as the impulse’s magnitude is

concerned,

I = Mv. (3)

In particular:

(a) for the hockey puck, I = 0.5 kg × 35 m/s = 17.5 kg ·m/s;

(b) for the tennis ball, I = 0.2 kg × 15 m/s = 3 kg ·m/s;

(c) for the tank, I = 12 · 103 kg × 4 m/s = 48 · 103 kg ·m/s.

Textbook problem 6.5.B:

The impulse of a force is defined as the average value of the force times its duration,

I = F ×∆t. (4)

Hence, given the impulse and the duration of the force, the average force is

F =
I

∆t
. (5)

Focusing on the magnitude of the average force and ignoring the direction, we drop the

vector notations and have F = I/∆t. For the examples in question:

(a) for the hockey puck, F = (17.5 kg ·m/s)/(1 s) = 17.5 N;

(b) for the tennis ball, F = (3 kg ·m/s)/(0.1 s) = 30 N;

(c) for the tank, F = (4.8 · 103 kg ·m/s)/(2 s) = 24 · 103 N.

Note units: 1 kg ·m/s = 1 N · s, hence (1 kg ·m/s)/(1 s) = 1 N.
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Textbook problem 6.5.C:

There is no single rule for all types of damage, but most of the time the damage follows from

the force itself rather than its impulse. Indeed, a big force acting over a short time makes a

lot more damage than a small force acting over a long times, even if the net impulse F ×∆t

is the same in both cases.

The area over which the force acts also affects the damage: The force concentrated over a

small area will be a lot more damaging than the same force spread over a large area. On the

other hand, concentrating the force on a particular body part also concentrates the damage

to that part, so the net damage depends on how important is that part for the whole body.

Textbook problem 6.8:

Throw the oranges in the forward direction as fast as you can — if you get a baseball bat

or something else which can give them more speed, use it. The point of this exercise is the

recoil, which will slow down the boat; if you throw enough oranges fast enough, the boat

will stop. Note that without friction, nothing else will work: the net momentum of the boat

and the oranges is conserved, so if you don’t throw them (or something else) overboard, the

boat will continue moving at constant velocity

v =
P

net

Mtotal

(6)

until it falls into the crevice. Also, you cannot just throw the oranges overboard, you

must give them forward velocity faster than the boat’s: this way, the oranges gain forward

momentum while the rest of the boat loses momentum and slows down.

Let v0 be the initial velocity of the boat (with all the oranges in it), v′oranges the velocity

of the oranges thrown overboard, and the v′boat the velocity of the boat after the oranges are

gone; all velocities are relative to the ice. Computing the net momentum before and after

throwing the oranges, we have

Pbefore =
(

Mtotal = Mboat +Moranges

)

× v0,

Pafter = Mboat × v′boat + Moranges × v′oranges.
(7)
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By momentum conservation, Pafter = Pbefore and therefore

Mboat × v′boat + Moranges × v′oranges =
(

Mboat +Moranges

)

× v0, (8)

or equivalently

Mboat ×
(

v0 − v′boat
)

= Moranges ×
(

v′oranges − v0
)

. (9)

Thus, if you throw the oranges forward so that v′oranges > v0, then v′boat < v0 and the boat

slows down.

To completely stop the boat we need v′oranges so high that v′boat becomes zero. Plugging

v′boat = 0 into eq. (9) and solving for the v′oranges, we find

v′oranges = v ×
Mboat +Moranges

Moranges
. (10)

If you cannot throw the oranges this fast, you cannot stop the boat.

Non-textbook problem #1:

Again, we use momentum conservation, Pafter
net = P

before
net : the net momentum before and

after the collision is the same. Before the collision we have

P
before
net = mcarvcar + mcowvcow = mcarvcar (11)

because cow’s velocity before the collision is zero (she is standing on the road). After the

collision, the car and the cow move at the same velocity v
′ (the cow on the car’s hood, she

does not have a choice), hence

P
after
net = mcarv

′

car + mcowv
′

cow = (mcar + mcow)v
′. (12)

Therefore, by momentum conservation

(mcar + mcow)v
′ = mcarvcar , (13)

3



and consequently

v
′ =

mcar

mcar + mcow
× vcar . (14)

Numerically, speed after the collision is

v′ =
2000 lb

2000 lb + 1000 lb
× 60MPH =

2

3
× 60MPH = 40MPH. (15)

Non-textbook problem #2:

Elastic collision of two bodies — such as steel balls — satisfies two conditions: (a) same

relative speed before and after the collision,

∣

∣

∣
v1 − v2

∣

∣

∣
=

∣

∣

∣
v
′

1 − v
′

2

∣

∣

∣
, (16)

and (b) momentum conservation

m1v1 + m2v2 = m1v
′

1 + m2v
′

2 . (17)

For the collision in question we know both balls’ velocities before and after the collision but

we don’t know the masses. Consequently, the elasticity condition (a) is not useful: we may

check that it is satisfied — it is — but it does not tell us anything about the masses. Instead,

we use the momentum conservation rule (b) — it applies to any collision, elastic or inelastic.

Let us rearrange eq. (17) by moving all term related to the first ball to the left hand side

and terms related to the second ball to the right hand side:

m1 ×

(

v1 − v
′

1

)

= m2 ×

(

v
′

2 − v2

)

. (18)

This is a one-dimensional problem so we may drop the vector notation, but we must continue

to keep track of velocities’ signs which indicate the direction of motion. Thus,

m1 ×

(

(+10m/s) − (−5m/s) = +15m/s
)

= m2 ×

(

(+5m/s) − (0m/s) = +5m/s
)

,

(19)

and consequently

m1

m2
=

5m/s

15m/s
=

1

3
: (20)

the first ball is 3 times lighter than the second ball.
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