
PHY–309K. Solutions for Problem set # 6.

Non-textbook problem #1:

(a) The period of rotation is the inverse of frequency,

T =
1

f
. (1)

Before we evaluate this formula, let us convert the frequency from RPM=rev/min to rev/s:

f = 10080rev/min× (1 min/60 s) = 10080

60
rev/s = 168 rev s. Consequently,

T =
1

f
=

1 rev

168 rev/s
=

1 s

168
≈ 6 ms. (2)

(b) Since 1 complete revolution is a rotation by 2π radians, the angular velocity ω in rad/s

is 2π times the cyclic frequency in rev/s. Thus,

ω = 2π rad/rev × f = 2π rad/rev × 168 rev/s = 1056 rad/s, (3)

or equivalently ω = 1056 s−1.

(c) The linear speed is v = ω × r where r is the distance from the axis of rotation. For a

point on the rim of the disk r = R — the disk’s radius, — hence

v = ω ×R = 1056 s−1
× 0.06 m = 63.3 m/s ≈ 142 miles/hour. (4)

(d) The centripetal acceleration is

ac =
v2

R
=

(ω ×R)2

R
= ω2

×R = (1056 s−1)2 × 0.06 m = 66850 m/s2 (5)

or over 6800 times the free-fall acceleration g.
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(e) For a point at distance r = 3 cm from the rotation axis, the linear speed of rotation is

v = r × ω = 0.03 m× 1056 s−1 = 31.6 m/s ≈ 71 miles/hr (6)

and the centripetal acceleration is

ac =
v2

r
= ω2

× r = 33425 m/s ≈ 3410× g. (7)

Non-textbook problem #2:

(a) A solid disk or cylinder of mass M and radius R has moment of inertia I = 1

2
MR2, cf.

figure 7–11 of the textbook. Approximating the CD as a solid disk (i.e., ignoring the small

hole in the middle of the disk), we have

I = 1

2
MR2 = 1

2
× 15 g × (6 cm)2 = 270 g · cm2 = 2.7 · 10−5 kg ·m2. (8)

For your information, for a disk of (outer) radius R with a hole in the middle of a smaller

radius r, the moment of inertia is I = 1

2
M × (R2 + r2). For a CD, the hole has radius

0.75 cm, thus taking it into account yields CD moment of inertia

I = 1

2
× (15 g)×

(

(6 cm)2 + (0.75 cm)2
)

= 274.22 g · cm2. (9)

Comparing this result to the approximate formula (8) we see that the the approximation is

about 1.5% off the mark.

(b) The angular momentum of a body with moment of inertia I spinning at angular frequency

ω is L = Iω. Thus, the angular momentum of the spinning CD is

L = I × ω = (2.7 · 10−5 kg ·m2)× (1056 s−1) = 0.0285 kg ·m2/s. (10)

(c) For the linear motion, the momentum changes with time at the rate equal to the net

force, ∆P
∆t

= Fnet. Likewise, for the rotation, the angular momentum changes with time at
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the rate equal to the net torque:

∆L

∆t
= τnet . (11)

For rigid bodies L = I × ω with constant moment of inertia I, hence ∆L = i × ∆ω and

therefore

τnet =
Iδω

∆t
= I ×

∆ω

∆t
= I × α. (12)

Note however that eq. (11) is more universal and applies to bodies of variable geometry —

and hence variable I — as well as rigid bodies, but eq. (12) applies only to bodies of rigid

geometry.

For the CD in question, the angular momentum increases from zero to L = 0.0285 kgm2/s

in one second, thus the net torque acting on the CD must be

τ =
∆L

∆t
=

0.0285 kgm2/s − 0

1 s
= 0.0285 kgm2/s2 = 0.0285 N×m. (13)

Non-textbook problem #3:

The balancing part of the medical scales is subject to three forces: (1) the cable force Fc

equal to the person’s weight Mg; (2) the weight w = mg of the m = 1 kg mass; and (3) a

force Fp at the pivot point of the balance. These forces act are as follows:

Fc Fp

w

1

cable

3 2

Lc Lm

The balance is pivoted at point 3 (the yellow dot on the picture), hence the force Fp acting

at that point has zero lever arm and consequently does not generate any torque, τp = 0.
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The cable force acts at point 1, 1 cm left of the pivot, hence its lever arm is Lc = 1 cm;

consequently, this force generates a torque of magnitude τc = Fc × Lc = Mg × Lc in the

counterclockwise direction. Finally, the weight w = mg acts at point 2 (the location of the

m = 1 kg mass), 80 cm right of the pivot, thus its lever arm is Lm = 80 cm and the torque

is τm = w × Lm = mg × Lm in the clockwise direction.

Putting all this torques together, we have the net torque

τnet = τc + τm + τp = Mg × Lc − mg × Lm + 0. (14)

When the balance is at equilibrium, this net torque must vanish, hence

Mg × Lc − mg × Lm = 0, (15)

and therefore the person’s mass M is equal to

M =
m× Lm

Lc

. (16)

Given m = 1 kg, Lm = 80 cm, and Lc = 1 cm, eq. (16) gives us M = 80 kg.

Non-textbook problem #4:

(a) The two astronaut system spins around its center of mass, located in the middle of the

line. Thus, originally, each astronaut is at distance of R1 from the center of rotation and the

moment of inertia if the system is

I1 = 2×M ×R2
1 = 2× (100 kg)× (10 m)2 = 20, 000 kg ·m2. (17)

The system spins at frequency f1 = 3 rev/min = 0.05 rev/s which corresponds to angular

velocity ω1 = 2π × f1 = 0.314 rad/s. Consequently, the net angular momentum is

L1 = I1 × ω1 = 6280 kgm2/s. (18)

(b) To change the net angular momentum of the system one needs external torques and

hence external forces. But the two astronauts are floating in space with their jet-packs off.
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Although they are pulling each other via the line, this force is internal to the two-astronaut

system and cannot change its net angular momentum. Hence, despite the changed geometry

of the system — the astronauts are closer to the center of rotation than before — the angular

momentum remains unchanged, L2 = L1.

The new configuration has astronauts closer to the center of rotation: R2 = 5 m = 1

2
R1.

Consequently, the moment of inertia is reduced to

I2 = 2×M ×R2
2 = 5, 000 kg ·m2 =

1

4
× I1. (19)

But the angular momentum remains unchanged, so to compensate for the reduced I, the

angular velocity ω has to increase:

ω2 =
L2

I2
=

L1

1

4
I1

= 4
L1

I1
= 4× ω1 = 1.256 rad/s. (20)

Or in terms of the frequency

f2 =
ω2

2π
=

4ω1

2π
= 4× f1 = 12 rev/min. (21)
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