
PHY–309K. Solutions for Problem set # 7.

Textbook problem 8.13:

(a) The potential energy of of a body in a gravitational field is

Epot = Mg × h (1)

where Mg is the body’s weight and h is its altitude. For a softball of mass M = 250 g

(and hence weight Mg = 2.45 N) at altitude h = 15 m, the potential energy is Epot =

2.45 N× 15 m = 36.75 J.

(b) Let us assume no air resistance to the ball’s flight, so the only force acting on the ball is

gravity. Consequently, the ball’s net mechanical energy is conserved,

Emech = Ekin + Epot = const. (2)

In the beginning, the ball has kinetic energy due to its speed but no altitude and hence no

potential energy, thus

Ebegin
mech = Ebegin

kin + 0. (3)

At the top of the trajectory, the ball’s speed drops to zero, and so the kinetic energy, but

now the ball has potential energy due to its altitude, thus

Etop
mech = 0 + Etop

pot . (4)

But the net mechanical energy is conserved, which means that

Ebegin
mech = Etop

mech (5)

and hence according to eqs. (3) and (4),

Ebegin
kin = Etop

pot (6)

In part (a) we evaluated the potential energy of the ball at the top of its trajectory as

Etop
pot = 36.75 J, hence according to eq. (6), the kinetic energy of the ball at the beginning of

its flight has exactly the same value, Ebegin
kin = 36.75 J.
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In real life, there is air resistance and the net energy of the ball is not conserved. Instead,

it keeps decreasing due to negative work of the air drag. Calculating this work is difficult

because the drag force depends on the ball’s speed, but we know this work is negative because

the direction of the drag force is opposite to the direction of the ball’s motion. Consequently,

the initial net energy of the ball must be bigger than the net energy at the top, so if the

flight tops at altitude 15 m, then the initial kinetic energy must be bigger than 36.75 Joules.

(c) Again we assume the air drag to be negligible, hence the net mechanical energy of the

ball is conserved according to eq. (2). When the ball comes down and returns to your hand,

it has zero potential energy, but it has non-zero speed and hence kinetic energy. Proceeding

similar to part (b), we have

Eend
mech = Eend

kin + 0 = Etop
mech (7)

and therefore

Eend
kin = Etop

pot = 36.75 J. (8)

And if the air resistance is important, then the ball keeps losing mechanical energy, so its

kinetic energy at the and of its flight is less than 36.75 J, although the exact calculation is

too difficult for this class.

(d) The kinetic energy of the ball is related to its speed according to

Ekin = 1
2
Mv2 =⇒ v =

√

2Ekin

M
. (9)

At the beginning of the ball’s flight, and again at its end, the ball has Ekin = 36.75 J and

hence speed v = 12.1 m/s. Of course the direction of the ball’s velocity is upward in the

beginning of the flight, and downward at the end. Taking the upward direction to be positive,

we have v(begin) = +12.1 m/s and v(end) = −12.1 m/s.
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Textbook problem 8.16:

(a) We don’t know the downhill distance Bob is skiing, but we know his altitude decreases

by 25 meters. Hence, his potential energy decreases according to

∆Epot = Mg ×∆h = 65 kg × 9.8 m/s2 × (−25 m) ≈ −16000 J. (10)

If the resistive forces (air drag and friction between the skis and the snow) are too small to

matter, Ben’s net mechanical energy is conserved, so the potential energy loss is the kinetic

energy gain:

∆ (Emech = Ekin + Epot) = 0 =⇒ ∆Ekin = −∆Epot ≈ +16000 J. (11)

At the beginning of the run, Ben had zero speed and hence zero kinetic energy. During the

run, Ekin increased by 16000 Joules, thus at the end Ekin = 16000 J.

(b) The speed is related to kinetic energy according to eq. (9), hence given the kinetic energy

calculated in part (a), the speed is v =
√

2× 16000 J/65 kg = 22 m/s.

(c) In conventional units, the speed of 22 m/s is 80 km/hour or 50 miles per hour. The speed

record for downhill skiing is over 140 MPH, so 50 MPH is quite reasonable for an experience

skier, but it’s dangerously fast for a novice on a “bunny slope”. Fortunately, in real life one

does not reach such speeds on a bunny slope because of resistive forces, especially the air

drag.

Textbook problem 8.19:

(a) Approximating the North American continent as a square slab of rock 5000 km on a side

and 30 km deep gives us area A = (5000 km)2 = 25 · 106 km2 and volume V = A× depth =

(25 · 106 km2) × (30 km) = 750 · 106 km3. Or in cubic meters, V = 750 · 106 × (103 m)3 =

750 · 106 × 109 m3 = 7.5 · 1017 m3. The mass of all this rock is the product of the volume

and the density,

M = V × ρ = (7.5 · 1017 m3)× (2800 kg/m3) = 2.1 · 1021 kg. (12)
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(b) The continent has a very large mass but very low speed v = 2 cm/yr =

(0.02 m)/(3.15 · 166 s) = 6.34 · 10−10 m/s. Consequently, its kinetic energy

ENA

kin = 1
2
Mv2 = 1

2
(2.1 · 1021 kg)× (6.34 · 10−10 m/s)2 = 422 J (13)

has a rather everyday value.

(c) By comparison, a 70 kg jogger running at speed 5 m/s (18 km/hour or 11 MPH) has

kinetic energy Ejogger
kin = 1

2
(70 kg) × (5 m/s)2 = 875 J. So the whole continent has only a

half of the jogger’s kinetic energy.

The non-textbook problem:

A horse of weight Mg = 2000 lb (the pound here is a unit of force rather than mass) walking

up a hill of height h = 1000 feet increases his potential energy by

∆Epot = Mg × h = 2 · 106 ft · lb. (14)

This energy gain comes from the work performed by the horse himself, so his net mechanical

work is W = 2 · 106 foot-pounds. Note that this work does not depend on the horizontal

motion of the horse while he walks up the hill’s slope, but only on his elevation gain.

Power is the ratio of work to the time it took,

P =
W

t
, (15)

so given the net amount of work and the power, we can calculate the time according to

t =
W

P
. (16)

For the problem at hand, the work is two million foot-pounds and the power is one horsepower

or 550 foot-pounds per second, thus

t =
2 · 106 ft · lb

550 ft · lb/s
≈ 3600 s = 1 hour. (17)

In other words, given one horsepower worth of power, the horse heeds an hour to get to the

top of the hill.
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If you prefer metric unites, you can calculate the net work as

W = ∆Epot = Mgh = 900 kg × 9.8 m/s2 × 300 m = 2.65 · 106 J, (18)

and then identify the horsepower as 746 Watt, hence

t =
W

P
=

2.65 · 106 J

746 W
≈ 3600 s = 1 hour. (19)
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