
PHY–309K. Solutions for Problem set # 10.

Non-textbook problem 1:

(a) The continuity equation says that the flow rate

F ≡ A× v = const (1)

is constant all along the pipe. Consequently, the water speeds up when the pipe narrows

down and slows down when the pipe widens up. Comparing the two segments of the pipe —

one wide and the other narrow — we can relate the speed of water through the two segments

as

vnarrow
vwide

=
Awide

Anarrow

. (2)

For the problem at hand, the wider segment has twice the diameter of the narrow segment,

and therefore four times the cross-sectional area. Indeed, for a cylindrical pipe of diameter

d,

A = πR2 = π(d/2)2 =
π

4
× d2 (3)

and therefore

Awide

Anarrow

=

(

dwide
dnarrow

)2

= (2 cm/1 cm)2 = 22 = 4. (4)

Hence, according to eq. (2),

vnarrow
vwide

= 4 =⇒ vnarrow = 4× vwide = 40 m/s. (5)

(b) According to Bernoulli equation

P + 1

2
ρv2 + ρgh = const. (6)

For a horizontal pipe the ρgh term is itself constant, hence

P + 1

2
ρv2 = const, (7)
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which means that for the two pipe segments

Pwide +
ρ

2
× v2wide = Pnarrow +

ρ

2
× v2narrow. (8)

Consequently,

Pwide − Pnarrow =
ρ

2
×
(

v2narrow − v2wide
)

=
1000 kg/m3

2
×
(

(40 m/s)2 − (10 m/s)2
)

= 750000 Pa = 750 kPa ≈ 7.5 atm.

(9)

And since the narrow segment of the pipe opens to the air, the pressure there is equal to the

atmospheric pressure, Pnarrow = 1 atm ≈ 100 kPa, it follows that the pressure in the wide

segment is Pwide = 100 kPa + 750 kPa = 850 kPa ≈ 8.5 atm ≈ 124 PSI.

Or to be precise, the absolute water pressure in the wide segment is 850 kPa (8.5 atm or

124 PSI), while the gauge pressure (the difference between the absolute water pressure and

the air pressure outside the pipe) is 750 kPa (7.5 atm, or 109 PSI).

Non-textbook problem 2:

Thermal expansion of most solid materials is linear, which means that all lengths change

with temperature according to

∆L = L0 × α×∆T (10)

For steel, the coefficient α of thermal expansion is α = 6.5 · 10−6/◦F , hence for temperature

changes between 0◦F and 100◦F ,

δL

L0

= α×∆T = (6.5 · 10−6/◦F )× (100◦F − 0◦F ) = 6.5 · 10−4, (11)

which means every meter of steel changes its length by 6.5 · 10−4 m = 0.65 mm. And for the

L0 = 150 m steel rail, this thermal expansion amounts to

∆L = 150 m× 6.5 · 10−4 = 9.75 cm. (12)

In other words, the rail is almost 10 cm (4 inches) longer in summer than it is in winter.
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Non-textbook problem 3:

The ideal gas law says that for a fixed amount of gas,

P × V

T abs
= const. (13)

Consequently, when the temperature and pressure of helium gas in the balloon change with

the balloon’s altitude, the volume of the gas changes according to

P × V

T abs
=

P0 × V0

T abs
0

=⇒ V = V0 ×
T abs

T abs
0

/

P

P0

(14)

Note that the temperatures in these formulæ are absolute temperatures, measured from

absolute zero in degrees Kelvin (or Rankin). So let’s translate both T and T0 into the Kelvin

scale using

T (in
◦

F ) =
9

5
× T (in

◦

C) + 32 =⇒ T (in
◦

C) =
5

9
×

(

T (in
◦

F ) − 32
)

, (15)

and

T abs(in
◦

K) = T (in
◦

C) + 273.15. (16)

Thus, T0 = 77◦F on the ground translates into T0 = 25◦C and hence T abs
0

= 298◦K, while

T = 23◦F at 10 000 ft altitude translates into T = −5◦C and hence T abs = 268◦K.

Substituting these temperatures into eq. (14) we find that the balloon expands to

V = (100 m3)×
268◦K

298◦K

/

690 mbar

1000 mbar
= (100 m3)× 0.901/0.69 = 130.6 m3. (17)

Non-textbook problem 4:

According to the universal gas law,

P × V

T
= n×R (18)

where V is the volume of the gas, P is its pressure, T is its absolute temperature, R =

8.314 J/
◦

K/mol = 8314 J/
◦

K/kmol is a universal gas constant, same for all gases, and n is
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the amount of gas in mols or kilomols. In terms of the mass M of the gas,

n =
M

µ
(19)

where µ is gas’s molecular weight; in this formula, if m is in grams then n is in mols, and if

M is in kilograms then n is in kilomols. Combining eqs. (18) and (19) we obtain

P × V

T
=

M

µ
×R, (20)

hence

M =
µ× P × V

R× T
(21)

and therefore density

ρ ≡
M

V
=

µ× P

R× T
(22)

For the carbon dioxide CO2, µ = 12 + 2× 16 = 44, which means one molecule’s mass is

44 atomic units, one mol’s mass is 44 grams, and one kilomols’s mass is 44 kilograms. Hence

under conditions prevailing on the surface of Venus — pressure P = 92 bar = 9.2 · 106 Pa =

9.2 · 106 J/m3, and absolute temperature T = 740◦K — the CO2 has density

ρ =
(44 kg/kmol)× (9.2 · 106 J/m3)

(8314 J/kmol/◦K)× (740◦K)
= 65.8 kg/m3. (23)

Non-textbook problem 5:

Initially, the wort is at T 0
w = 35◦C and the rocks are at T 0

r = 360◦C. After the rocks and the

wort reach thermal equilibrium, they all have the same temperature T e — and that’s what

we need to calculate.
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During the process (of reaching the equilibrium) the rocks cool down from T 0
r to T e,

which releases the amount of heat given by

Qr = Cr × (T 0
r − T e) (24)

where

Cr = Mr × cr = 20 kg × 0.19 cal/g/◦C = 3.8 kcal/◦C (25)

is heat capacity of the rocks. At the same time, the wort warms up from T 0
w to T e, which

consumes the amount of heat given by

Qw = Cw × (T e
− T 0

w) (26)

where

Cw = Mw × cw = 20 kg × 1.04 cal/g/◦C = 20.8 kcal/◦C; (27)

is heat capacity of the wort. This heat comes from the cooling rocks, thus Qw = Qr and

therefore

Cw × (T e
− T 0

w) = Cr × (T 0
r − T e). (28)

Solving this equation for the equilibrium temperature T e, we find

T e
× (Cw + Cr) = T 0

w × Cw + T 0
r × Cr (29)

and therefore

T e =
Cw

Cw + Cr
× T 0

w +
Cr

Cw + Cr
× T 0

r

=
20.8 kcal/◦C

20.8 kcal/◦C + 3.8 kcal/◦C
× 35◦C +

3.8 kcal/◦C

20.8 kcal/◦C + 3.8 kcal/◦C
× 360◦C

= 0.8455× 35◦C + 0.1545× 360◦C

= 85.2◦C.
(30)
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Non-textbook problem 6:

(a) A 100 g bullet moving at speed 400 m/s has kinetic energy

E = 1

2
M × v2 = 1

2
× 0.1 kg × (400 m/s)2 = 8000 J. (31)

When the bullet hits the target this energy is converted to heat; the amount of heat Q =

E = 8000 J, or in calories

Q = 8000 J
/

(4.186 J/cal) = 1911 cal. (32)

The ice is already at the melting point of 0◦C, hence the amount of heat needed for melting

is simply the latent heat of fusion Lf = 80 cal/g, i.e.

Q = Lf ×m (33)

where m is the mass of melted ice. (Note m < M = 100 g.) Thus,

m =
Q

Lf

=
1911 cal

80 cal/g
≈ 24 g. (34)

The remaining 76 g if ice remain un-melted.

(b) To completely vaporize the bullet, we need to melt the ice, warm up the water from 0◦C

to 100◦C, and then vaporize the water. The net amount of heat required for this process is

at least

Qmin = M × Lf + M × c× (100◦C − 0◦C) + M × Lv

= M × [80 cal/g + 1 cal/g/◦C× 100◦C + 540 cal/g]

= M × 720 cal/g.

(35)

Note that this is the minimal amount; for Q > Qmin, the whole bullet vaporizes, and then

the excess heat goes to increase the vapor’s temperature above the boiling point 100◦C.
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In energy units,

Qmin

M
= 720 cal/g × 4.186 J/cal = 3014 J/g = 3.014 · 106 J/kg. (36)

This means that if this heat comes from the kinetic energy of the bullet, we need at least

3.014 Megajoules of kinetic energy per kilogram of bullet’s mass. But

Ekin = 1

2
Mv2 =⇒

Ekin

M
= 1

2
v2, (37)

hence minimal kinetic energy per mass implies minimum speed vmin such that

1

2
v2min =

Emin

kin

M
= 3.104 · 106 J/kg =⇒ vmin =

√

2× 3.104 · 106 J/kg = 2455 m/s. (38)

Note that this minimal speed does not depend on the bullet’s mass: Any amount of ice —

from a snowflake to an icy asteroid — will be completely vaporized on impact if it hits a

hard target at this speed or faster.
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