PHY-309K. Solutions for the training exercise before $2 \underline{\text { nd }}$ test.

Problem 1:

Compare orbit equations for Ariel and for Luna:

$$
\begin{equation*}
T_{A}=2 \pi \sqrt{\frac{R_{A}^{3}}{G M_{U}}}, \quad T_{L}=2 \pi \sqrt{\frac{R_{L}^{3}}{G M_{E}}}, \tag{1}
\end{equation*}
$$

where M_{U} is Uranus's mass and M_{E} is Earth's mass. Taking the ratio of the two periods, we have

$$
\begin{equation*}
\frac{T_{A}}{T_{L}}=\frac{\sqrt{R_{A}^{3} / G M_{U}}}{\sqrt{R_{L}^{3} / G M_{E}}} \tag{2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left(\frac{T_{A}}{T_{L}}\right)^{2}=\frac{R_{A}^{3} / G M_{U}}{R_{L}^{3} / G M_{E}}=\left(\frac{R_{A}}{R_{L}}\right)^{3} /\left(\frac{M_{U}}{M_{E}}\right) . \tag{3}
\end{equation*}
$$

Solving this equation for the mass ratio, we obtain

$$
\begin{align*}
\frac{M_{U}}{M_{E}} & =\left(\frac{R_{A}}{R_{L}}\right)^{3} /\left(\frac{T_{A}}{T_{L}}\right)^{2} \tag{4}\\
& =\left(\frac{1}{2}\right)^{3} /\left(\frac{1}{11}\right)^{2}=\frac{1}{8} / \frac{1}{121}=\frac{121}{8} \approx 15
\end{align*}
$$

That is, Uranus is 15 times more massive than Earth.

Problem 2:

The net momentum of two colliding boats is conserved during the collision:

$$
\begin{equation*}
M_{A} v_{A}^{0}+M_{B} v_{B}^{0}=M_{A} v_{A}^{\prime}+M_{B} v_{B}^{\prime} \tag{5}
\end{equation*}
$$

where M_{A} and M_{B} are gross masses of Andy's and Bob's boats, v_{A}^{0} and v_{B}^{0} are their velocities immediately before the collision, and v_{A}^{\prime} and v_{B}^{\prime} are their velocities
immediately after the collision. Since the collision is inelastic, $v_{A}^{\prime}=v_{B}^{\prime}$. Consequently, we may solve for $v^{\prime}=v_{A}^{\prime}=v_{B}^{\prime}$:

$$
\begin{equation*}
v^{\prime}=\frac{M_{A} v_{A}^{0}+M_{B} v_{B}^{0}}{M_{A}+M_{B}}=\frac{M_{A}}{M_{A}+M_{B}} \times v_{A}^{0}+\frac{M_{B}}{M_{A}+M_{B}} \times v_{B}^{0} . \tag{6}
\end{equation*}
$$

Numerically, $M_{A}=1000 \mathrm{lb}, M_{B}=2000 \mathrm{lb}, v_{A}^{0}=+35 \mathrm{MPH}$, and $v_{B}^{0}=-25 \mathrm{MPH}$; note opposite signs of the two velocities. Consequently,

$$
\begin{align*}
v^{\prime} & =\frac{1000 \mathrm{lb}}{1000 \mathrm{lb}+2000 \mathrm{lb}} \times(+35 \mathrm{MPH})+\frac{2000 \mathrm{lb}}{1000 \mathrm{lb}+2000 \mathrm{lb}} \times(-25 \mathrm{MPH}) \\
& =\frac{1}{3} \times 35 M P H-\frac{2}{3} \times 25 M P H=-5 M P H \tag{7}
\end{align*}
$$

That is, the velocity of the two-boat wreck immediately after the collision is 5 MPH is the Southward direction.

Problem 3:

Let us picture the beam and the forces acting on it:

The net force on the beam must vanish, $M g-F_{D}-F_{C}=0$, and this allows as to use any point we like as a pivot for calculating the net torque. So let's use David's shoulder as a pivot. With this choice, beam's weight $M g$ has lever arm $=L_{D}$ and hence torque $\tau_{W}=M g \times L_{D}$ in the clockwise direction. The force F_{C} from Charlie's shoulder has lever arm $=L_{D}+L_{C}$ and hence torque $\tau_{C}=-F_{C} \times\left(L_{D}+L_{C}\right)$; the
sign is negative because this torque is counterclockwise. Finally, the force F_{D} from David's shoulder has zero lever arm and hence zero torque, $\tau_{D}=0$. Altogether, the net torque is

$$
\begin{equation*}
\tau_{\text {net }}=\tau_{W}+\tau_{C}+\tau_{D}=M g \times L_{D}-F_{C} \times\left(L_{D}+L_{C}\right)+0 \tag{8}
\end{equation*}
$$

In equilibrium, this net torque must vanish, and therefore

$$
\begin{equation*}
F_{C}=\frac{M g \times L_{D}}{L_{D}+L_{C}}=M g \times \frac{L_{D}}{L_{D}+L_{C}}=90 \mathrm{lb} \times \frac{4 \mathrm{ft}}{4 \mathrm{ft}+2 \mathrm{ft}}=60 \mathrm{lb} \tag{9}
\end{equation*}
$$

Thus, Charlie's shoulder pushes the beam up with a 60 pound force, or in other words, Charlie carries 60 pounds of the beam's weight.

As to the weight on David's shoulder, we use $M g-F_{C}-F_{D}=0$ to obtain $F_{D}=M g-F_{C}=90 \mathrm{lb}-60 \mathrm{lb}=30 \mathrm{lb}$.

Alternatively, we may re-calculate the torques using Charlie's shoulder as a pivot point. This gives zero lever arm for Charlie's force F_{C} and hence $\tau_{C}^{\prime}=0$; the beams weight $M g$ now has lever arm $=L_{C}$ and hence the torque $\tau_{W}^{\prime}=-M g \times L_{C}$ (the '-' sign indicates counterclockwise direction); and for the David's force F_{D} the lever arm is $L_{C}+L_{D}$ and the torque $\tau_{D}^{\prime}=+F_{D} \times\left(L_{C}+L_{D}\right)$. Consequently, the net torque is

$$
\begin{equation*}
\tau_{\mathrm{net}}^{\prime}=\tau_{C}^{\prime}+\tau_{W}^{\prime}+\tau_{D}^{\prime}=0-M g \times L_{C}+F_{D} \times\left(L_{C}+L_{D}\right) \tag{10}
\end{equation*}
$$

Again, we demand that this torque must vanish (since the beam is in equilibrium), which gives us

$$
\begin{equation*}
F_{D}=\frac{M g \times L_{C}}{L_{C}+L_{D}}=M g \times \frac{L_{C}}{L_{C}+L_{D}}=90 \mathrm{lb} \times \frac{2 \mathrm{ft}}{2 \mathrm{ft}+4 \mathrm{ft}}=30 \mathrm{lb} \tag{11}
\end{equation*}
$$

Thus, David's shoulder carries 30 pounds of the beam's weight.
PS: In this problem, we use pound (lb) as a unit of force rather than mass. The beam weighs 90 pounds, which means $M g=90 \mathrm{lb}$.

Problem 4:

Mechanical work is the product $W=$ force \times displacement in the direction of the force. The force \mathbf{F} in question is provided by student's legs. It balances the student's weight $M \mathrm{~g}$, hence the magnitude $F=M g=60 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 600 \mathrm{~N}$, and the direction of \mathbf{F} is vertically up.

Consequently, the displacement in the direction of the force \mathbf{F} is the vertical component of the student's displacement, i.e. his elevation gain $\Delta h=10 \mathrm{~m}$. The horizontal motion of the student is perpendicular to the force \mathbf{F} and does not count towards the mechanical work. Thus, $W=F \times \Delta h=600 \mathrm{~N} \times 10 \mathrm{~m}=6000$ Joules.

