
PHY–396 K. Problem set #2. Due September 18, 2004.

1. Continuing the previous homework set, consider a classical theory made of a complex scalar

field Φ of charge q 6= 0 and the the EM fields:

Lnet = DµΦ∗DµΦ − m2Φ∗Φ − 1
4F

µνFµν (1)

where

DµΦ = (∂µ + iqAµ)Φ and DµΦ∗ = (∂µ − iqAµ)Φ∗ (2)

are the covariant derivatives.

(a) Write down the equation of motion for all fields in a covariant from. Also, write down

the electric current

Jµ
def
= − ∂L

∂Aµ
(3)

in a manifestly gauge-invariant form and verify its conservation, ∂µJ
µ = 0 (as long as

the scalar fields satisfy their equations of motion).

(b) Write down the Noether stress-energy tensor for the whole field system and show that

Tµνnet ≡ TµνEM + Tµνmat = TµνNoether + ∂λKλµν , (4)

where

TµνEM = −FµαF να + 1
4g
µνFαβF

αβ (5)

as for the free EM,

Kλµν ≡ −Kµλν = −F λµAν , (6)

also exactly as for the free EM, and

Tµνmat = DµΦ∗DνΦ + DνΦ∗DµΦ − gµν
(
DλΦ∗DλΦ − m2Φ∗Φ

)
. (7)

Note: In the presence of an electric current Jµ, the ∂λKλµν correction to the electro-

magnetic stress-energy tensor contains an extra JµAν term. This term is important

for obtaining a gauge-invariant stress-energy tensor (7) for the scalar field.
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(c) Use the scalar fields’ equations of motion and the non-commutativity of covariant

derivatives

[Dµ, Dν ]Φ = iqFµνΦ, [Dµ, Dν ]Φ∗ = −iqFµνΦ∗ (8)

to show that

∂µT
µν
mat = +F νλJλ (9)

and therefore the net stress-energy tensor (4) is conserved.

Note: the last statement follows from problem 1.2 (e). Do not redo that problem here,

just quote the result.

2. Next, consider the quantum electromagnetic fields. Canonical quantization of the massless

vector field Aµ(x) is rather difficult because of the redundancy associated with the gauge

symmetry, so let me simply state without proof a few key properties of the quantum tension

fields Ê(x, t) and B̂(x, t). In the absence of electric charges and currents, these fields satisfy

time-independent operatorial identities

∇ · Ê(x, t) = ∇ · B̂(x, t) = 0 (10)

and have equal-time commutation relations

[
Êi(x, t), Êj(x

′, t′ = t)
]

= 0,[
B̂i(x, t), B̂j(x

′, t′ = t)
]

= 0,[
Êi(x, t), B̂j(x

′, t′ = t)
]

= −ih̄cεijk
∂

∂xk
δ(3)(x− x′).

(11)

(a) Verify that the commutation relations (11) are consistent with the time-independent

Maxwell equations (10).
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In the Heisenberg picture, the quantum EM fields also obey the time-dependent Maxwell

equations

∂B̂

∂t
= −∇× Ê ,

∂Ê

∂t
= +∇× B̂ .

(12)

(b) Derive eqs. (12) from the free electromagnetic Hamiltonian

ĤEM =

∫
d3x

(
1
2Ê

2 + 1
2B̂

2
)

(13)

and the equal-time commutation relations (11).

3. Finally, let us quantize a complex scalar field Φ(x). For simplicity, let’s restrict to a free

relativistic field, thus classically

L = ∂µΦ∗ ∂µΦ − m2 Φ∗Φ. (14)

In the Hamiltonian formalism, we trade the time derivatives ∂0Φ(x) and ∂0Φ
∗(x) for the

canonically conjugate fields Π(x) and Π∗(x). (Note that for complex field Π(x) is canon-

ically conjugate to the Φ∗(x) while Π∗(x) is canonically conjugate to the Φ(x).) Canon-

ical quantization of this system yields non-hermitian quantum fields Φ̂(x) 6= Φ̂†(x) and

Π̂(x) 6= Π̂†(x) and the Hamiltonian operator

Ĥ =

∫
d3x

(
Π̂†Π̂ + ∇Φ̂† · ∇Φ̂ + m2 Φ̂†Φ̂

)
. (15)

(a) Derive the Hamiltonian (15) and write down the equal-time commutation relations

between the quantum fields Φ̂(x), Φ̂†(x), Π̂(x) and Π̂†(x).

Next, let us expand the quantum fields into plane-wave modes:

Φ̂(x) =
∑
p

L−3/2eixpΦ̂p, Φ̂p =

∫
d3xL−3/2e−ipx Φ̂(x), (16)

and ditto for the Φ̂†(x), Π̂(x), and Π̂†(x) fields. Note that for the non–hermitian fields

Φ̂†p 6= Φ̂−p and Π̂†p 6= Π̂−p; instead, all the mode operators Φ̂p, Φ̂†p, Π̂p, and Π̂†p are
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completely independent of each other. Consequently, we have two independent species of

creation and annihilation operators, i.e. for each mode p we have independent operators

âp
def
=

EpΦ̂p + iΠ̂p√
2Ep

, â†p
def
=

EpΦ̂†p − iΠ̂†p√
2Ep

,

and

b̂p
def
=

EpΦ̂†−p + iΠ̂†−p√
2Ep

, b̂†p
def
=

EpΦ̂−p − iΠ̂−p√
2Ep

,

(17)

where Ep =
√

p2 +m2 .

(b) Verify the bosonic commutation relations (at equal times) between the annihilation

operators âp and b̂p and the corresponding creation operators â†p and b̂†p.

(c) Show that the Hamiltonian of the free charged fields is

Ĥ =

∫
d3x

(
Π†Π + ∇Φ† · ∇Φ + m2Φ†Φ

)
=
∑
p

(
Epâ

†
pâp + Epb̂

†
pb̂p

)
+ const.

(18)

Next, consider the classical Noether current

Jµ = iΦ∗∂µΦ − i(∂µΦ∗)Φ. (19)

of the global U(1) symmetry Φ(x) 7→ eiθΦ(x). In the Hamiltonian formalism

J0 = iΦ∗Π − iΠ∗Φ,

so its quantization suffers from the operator ordering ambiguity. To resolve the ambiguity,

we define the charge density operator in the quantum theory as

ρ̂(x) = i
2

{
Π̂†(x), Φ̂(x)

}
− i

2

{
Π̂(x), Φ̂†(x)

}
. (20)

(d) Show that in terms of creation and annihilation operators, the net charge operator
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Q̂ =
∫
d3x ρ̂(x) becomes

Q̂ =
∑
p

(
â†pâp − b̂†pb̂p

)
. (21)

Finally, consider the stress-energy tensor of the charged field. Classically, Noether theorem

gives

Tµν = ∂µΦ∗ ∂νΦ + ∂µΦ ∂νΦ∗ − gµνL. (22)

Quantization of this formula is straightforward (modulo ordering ambiguity); for example,

Ĥ ≡ T̂ 00 is precisely the integrand on the right hand side of eq. (15).

(e) Show that the total mechanical momentum operator of the fields is

P̂mech
def
=

∫
d3x T̂ 0,i =

∑
p

(
p â†pâp + p b̂†pb̂p

)
(23)

Physically, eqs. (23), (18) and (21) show that a complex field Φ(x) describes a relativistic

particle together with its antiparticle; they have exactly the same rest mass m but exactly

opposite charges ±1.
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