1. An operator acting on identical bosons can be described in terms of N-particle wave functions (the first-quantized formalism) or in terms of creation and annihilation operators in the Fock space (the second-quantized formalism). This exercise is about converting the operators from one formalism to another.

First consider the one-body operators, i.e. additive operators acting on one particle at a time. In the first-quantized formalism they act on N-particle states according to

$$
\begin{equation*}
\hat{A}_{\mathrm{tot}}^{(1)}=\sum_{i=1}^{N} \hat{A}_{1}(i \underline{\text { th }} \text { particle }) \tag{1}
\end{equation*}
$$

where \hat{A}_{1} is some kind of a one-particle operator (such as momentum $\hat{\mathbf{p}}$, or kinetic energy $\frac{1}{2 m} \hat{\mathbf{p}}^{2}$, or potential $V(\hat{\mathbf{x}})$, etc., etc.). In the second-quantized formalism such operators become

$$
\begin{equation*}
\hat{A}_{\mathrm{tot}}^{(2)}=\sum_{\alpha, \beta}\langle\alpha| \hat{A}_{1}|\beta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta} \tag{2}
\end{equation*}
$$

(a) Your task is to show that for any one-particle operator \hat{A}_{1} and any N-particle state $|\Psi\rangle$,

$$
\begin{equation*}
\hat{A}_{\text {tot }}^{(1)}|\Psi\rangle=\hat{A}_{\text {tot }}^{(1)}|\Psi\rangle . \tag{3}
\end{equation*}
$$

For simplicity, you should first prove this equality for $\hat{A}_{1}=|\alpha\rangle\langle\beta|$ and $|\Psi\rangle=$ $\left|\gamma_{1}, \ldots, \gamma_{N}\right\rangle$. Then you can use linearity to generalize to any N-particle states $|\Psi\rangle$ and any one-particles operators \hat{A}_{1}. Note: $\hat{A}_{1}=\sum_{\alpha, \beta}|\alpha\rangle\langle\alpha| \hat{A}_{1}|\beta\rangle\langle\beta|$.

Next, consider two-body operators, i.e. additive operators acting on two particle at a time. Given a two-particle operator $\hat{B}_{2}-$ such as $V\left(\hat{\mathbf{x}}_{1}-\hat{\mathbf{x}}_{2}\right)-$ the total B operator acts in the first-quantized formalism according to

$$
\begin{equation*}
\hat{B}_{\text {tot }}^{(1)}=\frac{1}{2} \sum_{i \neq j} \hat{B}_{2}(i \underline{\text { th }} \text { and } j \underline{\text { th }} \text { particles }), \tag{4}
\end{equation*}
$$

and in the second-quantized formalism according to

$$
\begin{equation*}
\hat{B}_{\mathrm{tot}}^{(2)}=\frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta}(\langle\alpha| \otimes\langle\beta|) \hat{B}_{2}(|\gamma\rangle \otimes|\delta\rangle) \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta} \tag{5}
\end{equation*}
$$

(b) Again, show that for any 2-particle operator \hat{B}_{2} and any $N \geq 2$ particle state $|\Psi\rangle$,

$$
\begin{equation*}
\hat{B}_{\text {tot }}^{(1)}|\Psi\rangle=\hat{B}_{\text {tot }}^{(1)}|\Psi\rangle \tag{6}
\end{equation*}
$$

2. Next, an exercise in bosonic commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0, \quad\left[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right]=0, \quad\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta} \tag{7}
\end{equation*}
$$

(a) Calculate the commutators $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}\right],\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\delta}\right]$ and $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger} \hat{a}_{\delta}\right]$.
(b) Consider three one-particle operators \hat{A}_{1}, \hat{B}_{1}, and \hat{C}_{1}. Let us define the corresponding second-quantized operators $\hat{A}_{\text {tot }}^{(2)}, \hat{B}_{\text {tot }}^{(2)}$, and $\hat{C}_{\text {tot }}^{(2)}$ according to eq. (2).
Show that if $\hat{C}_{1}=\left[\hat{A}_{1}, \hat{B}_{1}\right]$ then $\hat{C}_{\text {tot }}^{(2)}=\left[\hat{A}_{\text {tot }}^{(2)}, \hat{B}_{\text {tot }}^{(2)}\right]$.
(c) Next, calculate the commutator $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta}, \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu}\right]$.
(d) Finally, let \hat{A}_{1} be a one-particle operator, let \hat{B}_{2} and \hat{C}_{2} be two-body operators, and let $\hat{A}_{\text {tot }}^{(2)}, \hat{B}_{\text {tot }}^{(2)}$, and $\hat{C}_{\text {tot }}^{(2)}$ be the corresponding second-quantized operators according to eqs. (2) and (5).
Show that if $\hat{C}_{2}=\left[\left(\hat{A}_{1}(1 \underline{\text { st }})+\hat{A}_{1}(2 \underline{\text { nd }})\right), \hat{B}_{2}\right]$ then $\hat{C}_{\text {tot }}^{(2)}=\left[\hat{A}_{\text {tot }}^{(2)}, \hat{B}_{\text {tot }}^{(2)}\right]$.
3. The rest of this homework is about coherent states of harmonic oscillators and free quantum fields. Let us start with a harmonic oscillator $\hat{H}=\hbar \omega \hat{a}^{\dagger} \hat{a}$.
(a) For any complex number ξ we define a coherent state $|\xi\rangle \stackrel{\text { def }}{=} \exp \left(\xi \hat{a}^{\dagger}-\xi^{*} \hat{a}\right)|0\rangle$. Show that

$$
\begin{equation*}
|\xi\rangle=e^{-|\xi|^{2} / 2} e^{\xi \hat{a}^{\dagger}}|0\rangle \quad \text { and } \quad \hat{a}|\xi\rangle=\xi|\xi\rangle \tag{8}
\end{equation*}
$$

(b) Calculate the uncertainties Δq and Δp for a coherent state $|\xi\rangle$ and verify their minimality: $\Delta q \Delta p=\frac{1}{2} \hbar$. Also, verify $\delta n=\sqrt{\bar{n}}$ where $\bar{n} \stackrel{\text { def }}{=}\langle\hat{n}\rangle=|\xi|^{2}$.

Hint: use $\hat{a}|\xi\rangle=\xi|\xi\rangle$ and $\langle\xi| \hat{a}^{\dagger}=\xi^{*}\langle\xi|$.
(c) Consider time-dependent coherent states $|\xi(t)\rangle$. Show that for $\xi(t)=\xi_{0} e^{-i \omega t}$, the state $|\xi(t)\rangle$ satisfies the time-dependent Schrödinger equation $i \hbar \frac{d}{d t}|\xi(t)\rangle=\hat{H}|\xi(t)\rangle$.
(d) The coherent states are not quite orthogonal to each other. Calculate their overlap $\langle\eta \mid \xi\rangle$.

Now consider coherent states of multi-oscillator systems and hence quantum fields. In particular, let us focus on the creation and annihilation fields $\hat{\Psi}^{\dagger}(\mathbf{x})$ and $\hat{\Psi}(\mathbf{x})$ for nonrelativistic spinless bosons.
(e) Generalize (a) and construct coherent states $|\Phi\rangle$ which satisfy

$$
\begin{equation*}
\hat{\Psi}(\mathbf{x})|\Phi\rangle=\Phi(\mathbf{x})|\Phi\rangle \tag{9}
\end{equation*}
$$

for any given classical complex field $\Phi(\mathbf{x})$.
(f) Show that for any such coherent state, $\Delta N=\sqrt{\bar{N}}$ where

$$
\begin{equation*}
\bar{N} \stackrel{\text { def }}{=}\langle\Phi| \hat{N}|\Phi\rangle=\int d \mathbf{x}|\Phi(\mathbf{x})|^{2} . \tag{10}
\end{equation*}
$$

(g) Let

$$
\hat{H}=\int d \mathbf{x}\left(\frac{\hbar^{2}}{2 M} \nabla \hat{\Psi}^{\dagger} \cdot \nabla \hat{\Psi}+V(\mathbf{x}) \hat{\Psi}^{\dagger} \hat{\Psi}\right)
$$

and show that for any classical field configuration $\Phi(\mathbf{x}, t)$ that satisfies the classical field equation

$$
i \hbar \frac{\partial}{\partial t} \Phi(\mathbf{x}, t)=\left(-\frac{\hbar^{2}}{2 M} \nabla^{2}+V(\mathbf{x})\right) \Phi(\mathbf{x}, t)
$$

the time-dependent coherent state $|\Phi\rangle$ satisfies the true Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\Phi\rangle=\hat{H}|\Phi\rangle \tag{11}
\end{equation*}
$$

(h) Finally, show that the quantum overlap $\left|\left\langle\Phi_{1} \mid \Phi_{2}\right\rangle\right|^{2}$ between two different coherent states is exponentially small for any macroscopic difference $\delta \Phi(\mathbf{x})=\Phi_{1}(\mathbf{x})-\Phi_{2}(\mathbf{x})$ between the two field configurations.

