PHY-396 K. Problem set #3. Due September 25, 2007.

. An operator acting on identical bosons can be described in terms of N—particle wave
functions (the first-quantized formalism) or in terms of creation and annihilation operators
in the Fock space (the second-quantized formalism). This exercise is about converting the

operators from one formalism to another.

First consider the one-body operators, i.e. additive operators acting on one particle at a

time. In the first-quantized formalism they act on N—particle states according to
N
Agi = 2:%11(2'm particle) (1)
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where A; is some kind of a one-particle operator (such as momentum p, or kinetic energy

ﬁf)z, or potential V(x), etc., etc.). In the second-quantized formalism such operators

become

AZ) =S (ol A1) dfag. (2)
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(a) Your task is to show that for any one-particle operator Ay and any N—particle state
v),

(1 i1
AlY) = Al 1w). (3)
For simplicity, you should first prove this equality for A; = |a) (8] and |¥) =

|71 - -, yn). Then you can use linearity to generalize to any N—particle states |¥)

and any one-particles operators A;. Note: A; = >aplo) (@ A1 |B) (8]

Next, consider two-body operators, i.e. additive operators acting on two particle at a
time. Given a two-particle operator 32 — such as V(%3 — x3) — the total B operator

acts in the first-quantized formalism according to

B = 437 Bae and 7 pusicts), 0
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and in the second-quantized formalism according to

A 2 ~ N . R .
BE = 53 (el @ (B)Bs() @ 16)) alaba,a,. 5)
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(b) Again, show that for any 2—particle operator By and any N > 2 particle state W),

1

B 1wy = B |w). (6)

. Next, an exercise in bosonic commutation relations
(@n,ag) = 0, [ak.af] = 0, [aq.a5] = dap. (7)

(a) Calculate the commutators [d&dﬂ,dg], [d&%,&(;] and [dL&IB,dL&(g].

(b) Consider three one-particle operators fll, Bl, and C;. Let us define the corresponding

second-quantized operators flg%, Bgzg, and C’t(gg according to eq. (2).

Show that if Cy = [A1, By] then CF) = [A), BY))
i

(c¢) Next, calculate the commutator [&ad%d'yd(;, d}:&y].

(d) Finally, let Aq be a one-particle operator, let By and (5 be two-body operators, and
let flggz, Bégz, and C’t(ft) be the corresponding second-quantized operators according
to egs. (2) and (5).

~

Show that if Cz = [ (A1(1%) + A1(224)) , By then € = |4, B2,

to

. The rest of this homework is about coherent states of harmonic oscillators and free quan-

tum fields. Let us start with a harmonic oscillator H = hwa'a.

(a) For any complex number £ we define a coherent state |£) def exp (5&T —&*a) |0). Show
that

€) = P28 0y and ale) = €le). (8)

(b) Calculate the uncertainties Ag and Ap for a coherent state |£) and verify their min-
imality: AgAp = %h Also, verify dn = v/n where 7 def (n) = [€]2.



Hint: use a[¢) = € |¢) and (€] al = ¢ (¢].
(c) Consider time-dependent coherent states |£(t)). Show that for £(t) = &e ™, the
state |£(t)) satisfies the time-dependent Schrodinger equation ih% 1£(1)) = H |¢(1)).

(d) The coherent states are not quite orthogonal to each other. Calculate their overlap
(nl&)-

Now consider coherent states of multi-oscillator systems and hence quantum fields. In
particular, let us focus on the creation and annihilation fields ¥f(x) and ¥(x) for non-

relativistic spinless bosons.

(e) Generalize (a) and construct coherent states |®) which satisfy
U(x) @) = ©(x)|P) (9)

for any given classical complex field ®(x).
(f) Show that for any such coherent state, AN = VN where

N 5| NP :/dx|q>(x>|2. (10)

(g) Let
. B2 . P e
H = —VVU!. VU Uiy
dx 5 MV VU + V(x)
and show that for any classical field configuration ®(x,¢) that satisfies the classical
field equation

2
ih%@(x,t) = (-%VMV(@) D(x, 1),

the time-dependent coherent state |®) satisfies the true Schrodinger equation
inl D) = H|D) (11)
o't '

(h) Finally, show that the quantum overlap | (®1|®2) |> between two different coherent
states is exponentially small for any macroscopic difference §®(x) = ®;(x) — Po(x)

between the two field configurations.



