
PHY–396 K. Problem set #5. Due October 11, 2007.

1. The first problem explains why quantum mechanics of a fixed number of relativistic par-

ticles does not work (except as an approximation). Indeed, consider a free relativistic

spinless particle with Hamiltonian

Ĥ = +

√
M2 + P̂2 (1)

(in the c = h̄ = 1 units). In the coordinate picture, this Hamiltonian is a horrible integro–

differential operator, but that’s only a technical problem. The real problem concerns the

time evolution kernel

U(x− y; t) = 〈x, t|y, t0 = 0〉Heisenberg
picture = 〈x| exp(−itĤ) |y〉Schroedingerpicture . (2)

(a) Show that

U(x− y; t) =
−i

4π2 r

∫
dk k exp

(
irk − itω(k)

)
, (3)

where r = |x− y| and ω(k) =
√
M2 + k2.

(b) Let us take the limit t→∞, r →∞, with fixed ratio r/t; let’s stay inside the future

light cone, so (r/t) < 1. Show that in this limit, the evolution kernel becomes

U(x− y; t) ≈ (−iM)3/2

4π3/2
t

(t2 − r2)5/4
× exp(−iM

√
t2 − r2). (4)

Hint: Use the saddle point method to evaluate the integral (3). If you are not familiar

with this method, see the mathematical supplement.

(c) Now let’s take a similar approximation but go outside the light cone, thus fixed (r/t) >

1 while R, t→∞. Show that in this limit, the kernel becomes

U(x− y; t) ≈ iM3/2

4π3/2
t

(r2 − t2)5/4
× exp(−M

√
r2 − t2). (5)

This formula shows that the kernel diminishes exponentially outside the light cone, but

it does not vanish! Thus, given a particle localized at point y at the time t0 = 0, after
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time t > 0, its wave function is mostly limited to the future light cone r < t, but there is

an exponential tail outside the light cone. In other words, the probability of superluminal

motion is exponentially small but non-zero.

Obviously, such superluminal propagation cannot be allowed in a consistently relativistic

theory. And that’s why relativistic quantum mechanics of a single particle is inconsistent.

Likewise, relativistic quantum mechanics of any fixed number of particles does not work,

except as an approximation.

In the quantum field theory, this paradox is resolved by allowing for creation and annihi-

lation of particles. Quantum field operators acting at points x and y outside each others’

lightcones can either create a particle at x and then annihilate it at y, or else annihilate it

at y and then create it at x. I will show in class that the two effects precisely cancel each

other, so altogether there is no propagation outside the light cone. That’s how relativistic

QFT is perfectly causal while the relativistic QM is not.

2. Back in homework#2, problem 2, I introduced the free quantum EM fields Ê(x, t) and

B̂(x, t), their commutation relations, and the Hamiltonian. In this problem, you shall

connect those fields to photon creation and annihilation operators â†k,λ and âk,λ .

As a first step, let us decompose Schrödinger-picture fields into Fourier modes,

Ê(x) =

∫
d3k

(2π)3

∑
λ=±1

eikxek,λ Êk,λ , B̂(x) =

∫
d3k

(2π)3

∑
λ=±1

eikxek,λ B̂k,λ , (6)

where for each k, the ek,±1 are two unit vectors perpendicular to k and to each other. Note

that we need ek,λ ⊥ k to assure transversality of the free EM fields, ∇ · Ê = ∇ · B̂ = 0.

For future convenience, let us use the helicity basis of polarizations in which the unit vectors

ek,± are eigenvectors of the cross product with k,

k× ek,λ = iλ|k| ek,λ , λ = ±1, 0. (7)

The λ = 0 polarization is longitudinal (parallel to the k) while the λ = ±1 polarizations

are transverse ( ⊥ k). Note that the transverse polarization vectors ek,±1 are complex, so
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orthogonality and unit lengths mean

e∗k,λ · ek,λ′ = δλ,λ′ . (8)

To fix all the important phases, we let ek,0 = k/|k|, while for the transverse polarizations

we require

e∗k,λ = ek,−λ = e−k,+λ for λ = ±1 and ek,+1 × ek,−1 = +i
k

|k|
. (9)

(a) Work out the equal-time commutation relations for the Êk,λ and B̂k,λ operators. Also,

show that

Ĥ =

∫
d3k

(2π)3

∑
λ=±1

(
1
2Ê
†
k,λÊk,λ + 1

2B̂
†
k,λB̂k,λ

)
. (10)

(b) Define the photonic creation and annihilation operators according to

âk,λ = λB̂k,λ + iÊk,λ ,

â†k,λ = λB̂†k,λ − iÊ†k,λ ,
(11)

and show that they satisfy the relativistically-normalized bosonic commutation rela-

tions. Also show that

Ĥ =

∫
d3k

(2π)3
1

2ωk

∑
λ=±1

ωkâ
†
k,λâk,λ + zero point energy (12)

where ωk = |k|.

(c) Express the Heisenberg-picture fields Ê(x, t) and B̂(x, t) in terms of the Schrödin-

ger-picture creation and annihilator operators. In relativistic notations you should

get

F̂µν(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ=±1

(
e−ikx fµνk,λ âk,λ + e+ikx (fµνk,λ)∗ â†k,λ

)
k0=+ωk

(13)

for some polarization tensors fµνk,λ.
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(d) Now consider the quantum vector field Âµ(x). Show that in the Heisenberg picture

Âµ(x) = −
∫

d3k

(2π)3
1

2ωk

∑
λ=±1

(
e−ikx eµk,λ âk,λ + e+ikx (eµk,λ)∗ â†k,λ

)
k0=+ωk

(14)

where eµk,λ = (0, ek,λ) + kµCk,λ for some gauge-dependent some coefficients Ck,λ ; in

the Coulomb gauge (∇ · Â(x) ≡ 0) Ck,λ = 0 and eµk,λ = (0, ek,λ).

Assume that the gauge condition on the Âµ(x) is linear and local, and does not allow

for degrees of freedom not contained in the quantum F̂µν fields (i.e., for operators not

made out of the âk,λ and â†k,λ).

3. Finally, consider the EM propagators.

(a) First, a lemma: Show that

∑
λ=±1

fµνk,λ

(
fαβk,λ

)∗
= −kµkαgνβ − kνkβgµα + kµkβgνα + kνkαgµβ (15)

where k0 = ωk = |k|.

(b) Next, another lemma: Show that in any gauge consistent with eq. (14),

∑
λ=±1

eµk,λ
(
eαk,λ

)∗
= −gµα + kµq∗α(k) + qµ(k)kα (16)

for some gauge-dependent 4-vector qµ(k).

(c) Next, show that

〈0| Âµ(x) Âα(y) |0〉 =

∫
d3k

(2π)3
1

2ω

[(
−gµα + kµq∗α(k) + qµ(k)kα

)
e−ik(x−y)

]
k0=+ωk

(17)

(d) Finally, the Feynman propagator: Show that

GµαF (x− y) ≡ 〈0|T∗Âµ(x)Âα(y) |0〉 =

∫
d4k

(2π)4
(−gµα + kµq∗α + qµkα)

ie−ik(x−y)

k2 + i0
(18)
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for some gauge-dependent qµ(k). In the Feynman gauge, qµ ≡ 0 and hence

GµαF (x− y) = −gµα ×DF (x− y). (19)

For the vector fields, the time-ordered product T is modified to

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) + iδµ0δν0δ(4)(x− y). (20)

For the explanation of this modification, please see Quantum Field Theory by Claude

Itzykson and Jean–Bernard Zuber.
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