1. First, an exercise in Dirac matrices γ^{μ}. Please do not assume any specific form of these 4×4 matrices, just use the anti-commutation relations

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \tag{1}
\end{equation*}
$$

In class, we have defined the spin matrices

$$
\begin{equation*}
S^{\mu \nu}=-S^{\nu \mu} \stackrel{\text { def }}{=} \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{2}
\end{equation*}
$$

and showed that

$$
\begin{equation*}
\left[S^{\mu \nu}, \gamma^{\lambda}\right]=i g^{\nu \lambda} \gamma^{\mu}-i g^{\mu \lambda} \gamma^{\nu} . \tag{3}
\end{equation*}
$$

(a) Show that the spin matrices $S^{\mu \nu}$ have commutation relations of the Lorentz generators,

$$
\begin{equation*}
\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} S^{\kappa \nu}-i g^{\lambda \nu} S^{\kappa \mu}-i g^{\kappa \mu} S^{\lambda \nu}+i g^{\kappa \nu} S^{\lambda \mu} \tag{4}
\end{equation*}
$$

Continuous Lorentz transforms obtain from integrating infinite sequences of infinitesimal transforms $X^{\prime \mu}=X^{\mu}+\epsilon \Theta^{\mu}{ }_{\nu} X^{\nu}$ where $\Theta_{\mu \nu}=-\Theta_{\nu \mu}$. Altogether, a finite continuous transform acts as $X^{\prime \mu}=L_{\nu}^{\mu} X^{\nu}$ where

$$
\begin{equation*}
L=\exp (\Theta), \quad \text { i.e., } \quad L_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\Theta_{\nu}^{\mu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda}+\frac{1}{6} \Theta_{k}^{\mu} \Theta_{\lambda}^{\kappa} \Theta_{\nu}^{\lambda}+\cdots . \tag{5}
\end{equation*}
$$

(b) Let L be a Lorentz transform of the form (5), and let $M(L)=\exp \left(-\frac{i}{2} \theta_{\alpha \beta} S^{\alpha \beta}\right)$. Show that $M^{-1}(L) \gamma^{\mu} M(L)=L_{\nu}^{\mu} \gamma^{\nu}$.

Next, a little more algebra:
(c) Calculate $\left\{\gamma^{\rho}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right\},\left[\gamma^{\rho}, \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$ and $\left[S^{\rho \sigma}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$.
(d) Show that $\gamma^{\alpha} \gamma_{\alpha}=4, \gamma^{\alpha} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu}, \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=4 g^{\mu \nu}$ and $\gamma^{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}$. Hint: use $\gamma^{\alpha} \gamma^{\nu}=2 g^{\nu \alpha}-\gamma^{\nu} \gamma^{\alpha}$ repeatedly.

A charged spinor field $\Psi(x)$ in an EM background $A^{\mu}(x)$ satisfies gauge-covariant version of the Dirac equation, namely $\left(i \gamma^{\mu} D_{\mu}+m\right) \Psi(x)=0$ where $D_{\mu}=\partial_{\mu}+i q A_{\mu}(x)$ are the covariant derivatives.
(e) Show that the this equation implies $\left(m^{2}+D^{2}+q F_{\mu \nu} S^{\mu \nu}\right) \Psi(x)=0$.
2. Next, consider the $\gamma^{5} \stackrel{\text { def }}{=} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ matrix.
(a) Show that γ^{5} anticommutes with each of the γ^{μ} matrices $-\gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5}-$ and commutes with all the spin matrices $S^{\mu \nu}$.
(b) Show that γ^{5} is hermitian and that $\left(\gamma^{5}\right)^{2}=1$.
(c) Show that $\gamma^{5}=(-i / 24) \epsilon_{\kappa \lambda \mu \nu} \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}$ and $\gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}=-i \epsilon^{\kappa \lambda \mu \nu} \gamma^{5}$.
(d) Show that $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=-i \epsilon^{\kappa \lambda \mu \nu} \gamma_{\kappa} \gamma^{5}$.
(e) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices: $1, \gamma^{\mu}, \gamma^{[\mu} \gamma^{\nu]}, \gamma^{5} \gamma^{\mu}$ and γ^{5}.

Conventions: $\epsilon^{0123}=+1, \epsilon_{0123}=-1, \gamma^{[\mu} \gamma^{\nu]}=\frac{1}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)$,
$\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=\frac{1}{6}\left(\gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}-\gamma^{\lambda} \gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda}-\gamma^{\mu} \gamma^{\lambda} \gamma^{\nu}+\gamma^{\nu} \gamma^{\lambda} \gamma^{\mu}-\gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}\right)$,
and ditto for the $\gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}$.
Now consider Dirac matrices in spacetime dimensions $d \neq 4$. Such matrices always satisfy the Clifford algebra (1), but their sizes depend on d.

Let $\Gamma=(\pm 1$ or $\pm i) \gamma^{0} \gamma^{1} \cdots \gamma^{d-1}$ be the generalization of the γ^{5} to d dimensions; the pre-factor ± 1 or $\pm i$ is chosen such that $\Gamma=\Gamma^{\dagger}$ and $\Gamma^{2}=+1$.
(f) For even d, Γ anticommutes with all the γ^{μ}. Prove this, and use this fact to show that there are 2^{d} independent products of the γ^{μ} matrices, and consequently the matrices should be $2^{d / 2} \times 2^{d / 2}$.
(g) For odd d, Γ commutes with all the $\Gamma^{\mu}-$ prove this. Consequently, one can set $\Gamma=+1$ or $\Gamma=-1$; the two choices lead to in-equivalent sets of the γ^{μ}.

Classify the independent products of the γ^{μ} for odd d and show that their net number is 2^{d-1}; consequently, the matrices should be $2^{(d-1) / 2} \times 2^{(d-1) / 2}$.
3. Parity is an im-proper Lorentz transform. In $3+1$ dimensions, it reflects the space coordinates but not the time,

$$
\begin{equation*}
\mathcal{P}:(\mathbf{x}, t) \mapsto(-\mathbf{x}, t) . \tag{6}
\end{equation*}
$$

(a) Parity acts on Dirac spinor fields according to

$$
\begin{equation*}
\Psi^{\prime}(\mathbf{x}, t)= \pm \gamma^{0} \Psi(-\mathbf{x}, t) \tag{7}
\end{equation*}
$$

where the overall \pm sign is the intrinsic parity of a particular Dirac field.
Verify that the Dirac equation is covariant under this transformation and that the Dirac action $\int d^{4} x \mathcal{L}_{\text {Dirac }}$ is invariant.

In other even spacetime dimensions, parity acts as in eq. (6) and the Dirac fields transform according to (7). But in the odd spacetime dimension - i.e., even space dimensions - the reflection of all space coordinates at once is a combination of 180° rotations. Instead, parity reflects just one space coordinate,

$$
\begin{equation*}
\mathcal{P}:\left(t, x^{1}, x^{2}, \ldots, x^{d-1}\right) \mapsto\left(+t,-x^{1},+x^{2}, \ldots, x^{d-1}\right) . \tag{8}
\end{equation*}
$$

(b) How does a Dirac spinor field $\Psi(x)$ in an odd spacetime dimension transform under parity? Show that for a massless field, the Dirac action is invariant under parity, but for a massive field, the mass term in the Lagrangian breaks the symmetry.

Finally, consider a massless Dirac field $\Psi(x)$ coupled to a real scalar field $\Phi(x)$,

$$
\begin{equation*}
\mathcal{L}=i \bar{\Psi} \not \partial \Psi+\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{2}-\frac{1}{2} M_{s}^{2} \Phi^{2}+g \Phi \bar{\Psi} \Psi . \tag{9}
\end{equation*}
$$

(c) Show that the action $\int d^{d} x \mathcal{L}$ is parity-invariant provided Φ is a true scalar - $\Phi^{\prime}\left(x^{\prime}\right)=$ $+\Phi(x)$ - for even d, and pseudoscalar - $\Phi^{\prime}\left(x^{\prime}\right)=-\Phi(x)$ — for odd d.

