
PHY–396 K. Problem set #7. Due October 23, 2007.

1. Consider bilinear products of a Dirac field Ψ(x) and its conjugate Ψ(x). Generally, such

products have form ΨΓΨ where Γ is one of 16 matrices discussed in the previous homework;

altogether, we have

S = ΨΨ, V µ = ΨγµΨ, Tµν = Ψiγ[µγν]Ψ, Aµ = Ψγ5γµΨ, and P = Ψiγ5Ψ.

(1)

(a) Show that all the bilinears (1) are Hermitian.

Hint: First, show that
(
ΨΓΨ

)†
= ΨΓΨ.

Note: despite the Fermi statistics,
(

Ψ†αΨβ

)†
= +Ψ†βΨα.

(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V µ and the Aµ as vectors, and the Tµν as an antisymmetric tensor.

(c) Find the transformation rules of the bilinears (1) under parity (cf. problem 2 of the

previous set) and show that while S is a true scalar and V is a true (polar) vector, P

is a pseudoscalar and A is an axial vector.

Next, consider the charge-conjugation properties of the Dirac bilinears. To avoid the

operator-ordering problems, take Ψ(x) and Ψ†(x) to be “classical” fermionic fields which

anticommute with each other, ΨαΨ†β = −Ψ†βΨα.

(d) In the Weyl convention, C : Ψ(x) 7→ ±γ2Ψ∗(x). Show that C : ΨΓΨ 7→ ΨΓcΨ where

Γc = γ0γ2Γ>γ0γ2.

(e) Calculate Γc for all 16 independent matrices Γ and find out which Dirac bilinears are

C–even and which are C–odd.

(f) Verify that the Dirac action is invariant under the charge conjugation.

2. Next, a few exercises concerning the plane-wave solutions e−ipxu(p, s) and e+ipxv(p, x) of

the Dirac equation.

(a) Verify that u†(p, s)u(p, s′) = 2p0δs,s′ and likewise v†(p, s)v(p, s′) = 2p0δs,s′ . Also, show

that for p′ = (+p0,−p), u†(p, s)v(p′, s′) = 0.
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(b) Show that γ0u(p, s) = +u(p′, s) but γ0v(p, s) = −v(p′, s) where p′ = (p0,−p). Also

show that in the Weyl basis, γ2u∗(p, s) = v(p, s) and γ2v∗(p, s) = u(p, s).

(c) Show that

∑
s=1,2

uα(p, s)ūβ(p, s) = (6p+m)αβ and
∑
s=1,2

vα(p, s)v̄β(p, s) = (6p−m)αβ . (2)

(d) Prove the Gordon identity

ū(p′, s′)γµu(p.s) =
(p′ + p)µ

2m
ū(p′s′)u(p, s) +

i(p′ − p)ν
m

ū(p′s′)Sµνu(p, s). (3)

Note: This time, the momenta p and p′ are unrelated to each other.

Hint: First, use Dirac equations for the u and the ū′ to show that

2mū′γµu = ū′(6p′γµ + γµ 6p)u.

(e) Generalize the Gordon identity to ū′γµv, v̄′γµu and v̄′γµv.

3. Now consider the quantum Dirac fields

Ψ̂(x) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e−ipxu(p, s) âp,s + e+ipxv(p, s) b̂†p,s

)
,

Ψ̂†(x) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e+ipxu†(p, s) â†p,s + e−ipxv†(p, s) b̂†p,s

)
,

(4)

where â†, b̂† and â, b̂ are relativistically-normalized fermionic creation and annihilation

operators. Those operators satisfy the anti-commutation relations

{
â†p,s, âp′,s′

}
=
{
b̂†p,s, b̂p′,s′

}
= 2Ep (2π)3δ(3)(p− p′) δs,s′ ,{

â or b̂, â or b̂
}

=
{
â† or b̂†, â† or b̂†

}
=
{
â, b̂†

}
=
{
â†, b̂

}
= 0,

(5)

but you don’t need them for this exercise.
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In the Fock space, the charge conjugation operator Ĉ = Ĉ−1 acts as Ĉ |q,p, s〉 = ± |−q,p, s〉
where q is the charge (which have opposite signs for particles and antiparticles) and the

overall ± sign is the same for all particles and antiparticles of a given species; it’s called the

intrinsic C. Consequently, Ĉ transforms the creation and annihilation operators according

to

Ĉâp,sĈ = ±b̂p,s , Ĉâ†p,sĈ = ±b̂†p,s ,

Ĉb̂p,sĈ = ±âp,s , Ĉb̂†p,sĈ = ±â†p,s .
(6)

(a) Show that eqs. (6) imply that the quantum Dirac field Ψ̂(x) transforms under charge

conjugation exactly as in problem 1, namely ĈΨ̂(x)Ĉ = ±γ2Ψ̂∗(x). Here Ψ̂∗(x) means

the transpose (in the Dirac matrix sense) of the Ψ̂†(x), i.e. the column made of the

four Ψ†α(x).

Hint: Use what you should have proved in problem 2(b).

Now consider the parity (space reflection) operator. In the Fock space, it acts as P̂ |q,p, s〉 =

± |q,−p, s〉 where the overall sign is the intrinsic parity of the species in question. Note

that parity reverses the direction of the 3–momentum p, but it does not reverse the spin s

because ~S is an axial vector. Similar to the charge conjugation, P̂2 = 1 so P̂−1 = P̂ .

(b) The quantum Dirac field should transform under parity as P̂Ψ̂(x, t)P̂ = ±γ0Ψ̂(−x,+t),
cf. the previous homework set. Show that this requires

P̂ âp,sP̂ = ±â−p,s , P̂ â†p,sP̂ = ±â†−p,s ,

P̂ b̂p,sP̂ = ∓b̂−p,s , P̂ b̂†p,sP̂ = ∓b̂†−p,s ,
(7)

where the particles and the antiparticles have opposite intrinsic parities.

Hint: Use what you should have proved in problem 2(b).
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