1. Consider bilinear products of a Dirac field $\Psi(x)$ and its conjugate $\bar{\Psi}(x)$. Generally, such products have form $\bar{\Psi} \Gamma \Psi$ where Γ is one of 16 matrices discussed in the previous homework; altogether, we have
$S=\bar{\Psi} \Psi, \quad V^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi, \quad T^{\mu \nu}=\bar{\Psi} i \gamma^{[\mu} \gamma^{\nu]} \Psi, \quad A^{\mu}=\bar{\Psi} \gamma^{5} \gamma^{\mu} \Psi, \quad$ and $\quad P=\bar{\Psi} i \gamma^{5} \Psi$.
(a) Show that all the bilinears (1) are Hermitian.

Hint: First, show that $(\bar{\Psi} \Gamma \Psi)^{\dagger}=\overline{\Psi \Gamma} \Psi$.
Note: despite the Fermi statistics, $\left(\Psi_{\alpha}^{\dagger} \Psi_{\beta}\right)^{\dagger}=+\Psi_{\beta}^{\dagger} \Psi_{\alpha}$.
(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars, the V^{μ} and the A^{μ} as vectors, and the $T^{\mu \nu}$ as an antisymmetric tensor.
(c) Find the transformation rules of the bilinears (1) under parity (cf. problem 2 of the previous set) and show that while S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial vector.

Next, consider the charge-conjugation properties of the Dirac bilinears. To avoid the operator-ordering problems, take $\Psi(x)$ and $\Psi^{\dagger}(x)$ to be "classical" fermionic fields which anticommute with each other, $\Psi_{\alpha} \Psi_{\beta}^{\dagger}=-\Psi_{\beta}^{\dagger} \Psi_{\alpha}$.
(d) In the Weyl convention, $\mathcal{C}: \Psi(x) \mapsto \pm \gamma^{2} \Psi^{*}(x)$. Show that $\mathcal{C}: \bar{\Psi} \Gamma \Psi \mapsto \bar{\Psi} \Gamma^{c} \Psi$ where $\Gamma^{c}=\gamma^{0} \gamma^{2} \Gamma^{\top} \gamma^{0} \gamma^{2}$.
(e) Calculate Γ^{c} for all 16 independent matrices Γ and find out which Dirac bilinears are \mathcal{C}-even and which are \mathcal{C}-odd.
(f) Verify that the Dirac action is invariant under the charge conjugation.
2. Next, a few exercises concerning the plane-wave solutions $e^{-i p x} u(p, s)$ and $e^{+i p x} v(p, x)$ of the Dirac equation.
(a) Verify that $u^{\dagger}(p, s) u\left(p, s^{\prime}\right)=2 p^{0} \delta_{s, s^{\prime}}$ and likewise $v^{\dagger}(p, s) v\left(p, s^{\prime}\right)=2 p^{0} \delta_{s, s^{\prime}}$. Also, show that for $p^{\prime}=\left(+p^{0},-\mathbf{p}\right), u^{\dagger}(p, s) v\left(p^{\prime}, s^{\prime}\right)=0$.
(b) Show that $\gamma^{0} u(p, s)=+u\left(p^{\prime}, s\right)$ but $\gamma^{0} v(p, s)=-v\left(p^{\prime}, s\right)$ where $p^{\prime}=\left(p^{0},-\mathbf{p}\right)$. Also show that in the Weyl basis, $\gamma^{2} u^{*}(p, s)=v(p, s)$ and $\gamma^{2} v^{*}(p, s)=u(p, s)$.
(c) Show that

$$
\begin{equation*}
\sum_{s=1,2} u_{\alpha}(p, s) \bar{u}_{\beta}(p, s)=(\not p+m)_{\alpha \beta} \quad \text { and } \quad \sum_{s=1,2} v_{\alpha}(p, s) \bar{v}_{\beta}(p, s)=(\not p-m)_{\alpha \beta} \tag{2}
\end{equation*}
$$

(d) Prove the Gordon identity

$$
\begin{equation*}
\bar{u}\left(p^{\prime}, s^{\prime}\right) \gamma^{\mu} u(p . s)=\frac{\left(p^{\prime}+p\right)^{\mu}}{2 m} \bar{u}\left(p^{\prime} s^{\prime}\right) u(p, s)+\frac{i\left(p^{\prime}-p\right)_{\nu}}{m} \bar{u}\left(p^{\prime} s^{\prime}\right) S^{\mu \nu} u(p, s) \tag{3}
\end{equation*}
$$

Note: This time, the momenta p and p^{\prime} are unrelated to each other.
Hint: First, use Dirac equations for the u and the \bar{u}^{\prime} to show that
$2 m \bar{u}^{\prime} \gamma^{\mu} u=\bar{u}^{\prime}\left(\not p^{\prime} \gamma^{\mu}+\gamma^{\mu} \not p\right) u$.
(e) Generalize the Gordon identity to $\bar{u}^{\prime} \gamma^{\mu} v, \bar{v}^{\prime} \gamma^{\mu} u$ and $\bar{v}^{\prime} \gamma^{\mu} v$.
3. Now consider the quantum Dirac fields

$$
\begin{align*}
\hat{\Psi}(x) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{s}\left(e^{-i p x} u(p, s) \hat{a}_{p, s}+e^{+i p x} v(p, s) \hat{b}_{p, s}^{\dagger}\right), \\
\hat{\Psi}^{\dagger}(x) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{s}\left(e^{+i p x} u^{\dagger}(p, s) \hat{a}_{p, s}^{\dagger}+e^{-i p x} v^{\dagger}(p, s) \hat{b}_{p, s}^{\dagger}\right), \tag{4}
\end{align*}
$$

where $\hat{a}^{\dagger}, \hat{b}^{\dagger}$ and \hat{a}, \hat{b} are relativistically-normalized fermionic creation and annihilation operators. Those operators satisfy the anti-commutation relations

$$
\begin{align*}
\left\{\hat{a}_{p, s}^{\dagger}, \hat{a}_{p^{\prime}, s^{\prime}}\right\} & =\left\{\hat{b}_{p, s}^{\dagger}, \hat{b}_{p^{\prime}, s^{\prime}}\right\}=2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \delta_{s, s^{\prime}} \\
\{\hat{a} \text { or } \hat{b}, \hat{a} \text { or } \hat{b}\} & =\left\{\hat{a}^{\dagger} \text { or } \hat{b}^{\dagger}, \hat{a}^{\dagger} \text { or } \hat{b}^{\dagger}\right\}=\left\{\hat{a}, \hat{b}^{\dagger}\right\}=\left\{\hat{a}^{\dagger}, \hat{b}\right\}=0, \tag{5}
\end{align*}
$$

but you don't need them for this exercise.

In the Fock space, the charge conjugation operator $\hat{\mathcal{C}}=\hat{\mathcal{C}}^{-1}$ acts as $\hat{\mathcal{C}}|q, \mathbf{p}, s\rangle= \pm|-q, \mathbf{p}, s\rangle$ where q is the charge (which have opposite signs for particles and antiparticles) and the overall \pm sign is the same for all particles and antiparticles of a given species; it's called the intrinsic C. Consequently, $\hat{\mathcal{C}}$ transforms the creation and annihilation operators according to

$$
\begin{array}{rlrl}
\hat{\mathcal{C}} \hat{a}_{p, s} \hat{\mathcal{C}} & = \pm \hat{b}_{p, s}, & \hat{\mathcal{C}} \hat{a}_{p, s}^{\dagger} \hat{\mathcal{C}}= \pm \hat{b}_{p, s}^{\dagger}, \tag{6}\\
\hat{\mathcal{C}} \hat{b}_{p, s} \hat{\mathcal{C}}= \pm \hat{a}_{p, s}, & \hat{\mathcal{C}} \hat{b}_{p, s}^{\dagger} \hat{\mathcal{C}}= \pm \hat{a}_{p, s}^{\dagger} .
\end{array}
$$

(a) Show that eqs. (6) imply that the quantum Dirac field $\hat{\Psi}(x)$ transforms under charge conjugation exactly as in problem $\mathbf{1}$, namely $\hat{\mathcal{C}} \hat{\Psi}(x) \hat{\mathcal{C}}= \pm \gamma^{2} \hat{\Psi}^{*}(x)$. Here $\hat{\Psi}^{*}(x)$ means the transpose (in the Dirac matrix sense) of the $\hat{\Psi}^{\dagger}(x)$, i.e. the column made of the four $\Psi_{\alpha}^{\dagger}(x)$.

Hint: Use what you should have proved in problem 2(b).
Now consider the parity (space reflection) operator. In the Fock space, it acts as $\hat{\mathcal{P}}|q, \mathbf{p}, s\rangle=$ $\pm|q,-\mathbf{p}, s\rangle$ where the overall sign is the intrinsic parity of the species in question. Note that parity reverses the direction of the 3 -momentum \mathbf{p}, but it does not reverse the spin s because \vec{S} is an axial vector. Similar to the charge conjugation, $\hat{\mathcal{P}}^{2}=1$ so $\hat{\mathcal{P}}^{-1}=\hat{\mathcal{P}}$.
(b) The quantum Dirac field should transform under parity as $\hat{\mathcal{P}} \hat{\Psi}(\mathbf{x}, t) \hat{\mathcal{P}}= \pm \gamma^{0} \hat{\Psi}(-\mathbf{x},+t)$, $c f$. the previous homework set. Show that this requires

$$
\begin{array}{ll}
\hat{\mathcal{P}} \hat{a}_{\mathbf{p}, s} \hat{\mathcal{P}}= \pm \hat{a}_{-\mathbf{p}, s}, & \hat{\mathcal{P}} \hat{a}_{\mathbf{p}, s}^{\dagger} \hat{\mathcal{P}}= \pm \hat{a}_{-\mathbf{p}, s}^{\dagger}, \\
\hat{\mathcal{P}} \hat{b}_{\mathbf{p}, s} \hat{\mathcal{P}}=\mp \hat{b}_{-\mathbf{p}, s}, & \hat{\mathcal{P}} \hat{b}_{\mathbf{p}, s}^{\dagger} \hat{\mathcal{P}}=\mp \hat{b}_{-\mathbf{p}, s}^{\dagger}, \tag{7}
\end{array}
$$

where the particles and the antiparticles have opposite intrinsic parities.
Hint: Use what you should have proved in problem 2(b).

