
PHY–396 K. Problem set #12. Due November 29, 2007.

1. A muon usually decays into an electron, an electron-flavored antineutrino, and a muon-

flavored neutrino, µ− → e−ν̄eνµ. In the Fermi theory of weak interactions, the matrix

element for this decays is

〈
e−, ν̄e, νµ

∣∣M ∣∣µ−〉 =
GF√

2

[
ū(νµ)(1− γ5)γαu(µ−)

]
×
[
ū(e−)(1− γ5)γαv(ν̄e)

]
. (1)

The modern Standard Model of particle interactions produces essentially the same

amplitude at the tree level.

Experimentally, the neutrinos and antineutrinos are hard to detect. But it is easy to

measure the muon’s net decay rate Γ = 1/τµ and the energy distribution dΓ/dEe of

the electrons produced by decaying muons. Your task is to calculate these quantities

from the amplitude (1).

(a) Sum the absolute square of the amplitude (1) over the final particle spins and

average over the initial muon’s spin. Show that altogether,

1
2

∑
all

spins

∣∣〈e−, ν̄e, νµ∣∣M ∣∣µ−〉∣∣2 = 64G2
F (pµ · pν̄) (pe · pν). (2)

The rest of this problem is the phase space calculation. The following lemma is very

useful for three-body decays like µ− → e− + νµ + ν̄e:

(b) Consider a generic three-body decay of some particles of mass M0 into three par-

ticles of respective masses m1, m2, and m3. Show that in the rest frame of the

original particle, the partial decay rate is given by

dΓ =
1

2M0
× |M|2 × d3Ω

256π5
× dE1 dE2 dE3 δ(E1 + E2 + E3 −M0), (3)

where d3Ω comprises three angular variables parameterizing the directions of the

three final-state particles relative to some external frame, but not affecting the

angles between the three momenta. For example, one may use two angles to
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describe the orientation of the decay plane (the three momenta are coplanar,

p1 + p2 + p3 = 0) and one more angle to fix the direction of e.g., p1 in that

plane. Altogether,
∫
d3Ω = 4π × 2π = 8π2.

Also show that when m1 = m2 = m3 = 0, the kinematically allowed range of the

final particles’ energies is given by

0 ≤ E1, E2, E3 ≤ 1
2M0 while E1 + E2 + E3 = M0, (4)

but for the non-zero masses m1,2,3 this range is much more complicated.

The electron and the neutrinos are much lighter then the muon, so in most decay

events all three final-state particles are ultra-relativistic. This allows us to approximate

me ≈ mν ≈ mν̄ ≈ 0, which greatly simplifies the last part of this exercise:

(c) Integrate the muon’s partial decay rate over the final particle energies and derive

first dΓ/dEe and then the total decay rate.

2. Now consider the Bhabha scattering e−e+ → e−e+. In QED, there are two tree-level

Feynman diagrams contributing to this process. Note that their contributions must be

added before squaring the amplitude and adding/averaging over spins,

|M1 +M2|2 = |M1|2 + |M2|2 + 2<
(
M∗

1M2

)
6= |M1|2 + |M2|2. (5)

Your task is to calculate the un-polarized partial cross-section dσ/dΩ for the Bhabha

scattering. For simplicity, assume E � me and neglect the electron’s mass throughout

your calculation. You may find it convenient to use Mandelstam’s Lorentz-invariant

kinematic variables s, t, and u, see eq. (5.69) of the Peskin & Schroeder textbook for

details. Note s+ t+ u = 4m2
e ≈ 0.

The answer to this problem is simple:

(
dσ

dΩ

)
c.m.

=
α2

2s

[(
t

s

)2

+
(s
t

)2
+
(u
s

+
u

t

)2
]

(6)

but the intermediate steps are quite complicated, so beware.
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