1. Consider a QFT where heavy (i.e., $M_{s} \gg m_{e}$) neutral scalar particles have Yukawa-like coupling to electrons, which in turn couple to photons according to the usual QED rules, thus

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\Psi}\left(i \not D-m_{e}\right) \Psi+\left[\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} M_{s}^{2} \varphi^{2}\right]+g \varphi \times \bar{\Psi} \Psi \tag{1}
\end{equation*}
$$

In this theory, an electron and a positron colliding with energy $E_{\text {c.m. }}>M_{s}$ may annihilate into one photon and one scalar particle, $e^{-}+e^{+} \rightarrow \gamma+S$.
(a) Draw tree diagrams for the $e^{-}+e^{+} \rightarrow \gamma+S$ process and write down the tree-level matrix element $\langle\gamma S| \mathcal{M}\left|e^{-} e^{+}\right\rangle$.
(b) Verify the Ward identity for the photon.
(c) Sum $|\mathcal{M}|^{2}$ over the photon's polarizations, average over the fermion's spins, and calculate the partial cross-section

$$
\frac{d \sigma\left(e^{-} e^{+} \rightarrow \gamma S\right)}{d \Omega_{\mathrm{c} . \mathrm{m} .}}
$$

For simplicity, neglect the electron's mass. But don't neglect the mass of the scalar.
Note: because of the scalar's mass, the kinematic relations between Mandelstam's s, t, and u and between momentum products such as $\left(k_{\gamma} p_{\mp}\right)$, etc., are different from the $e^{+} e^{-} \rightarrow \gamma \gamma$ annihilation.
2. Now consider the Compton scattering of a photon off an electron $-\gamma e^{-} \rightarrow \gamma e^{-}-$at the tree level of pure QED.
(a) Use crossing symmetry between the Compton scattering and the $e^{+} e^{-} \rightarrow \gamma \gamma$ annihilation - and my notes for the latter - to show that for the Compton scattering

$$
\begin{equation*}
\frac{1}{4} \sum_{\lambda, \lambda^{\prime}} \sum_{s, s^{\prime}}|\mathcal{M}|^{2}=2 e^{4}\left[-\frac{u-m^{2}}{s-m^{2}}-\frac{s-m^{2}}{u-m^{2}}-1+\left(1+\frac{2 m^{2}}{s-m^{2}}+\frac{2 m^{2}}{u-m^{2}}\right)^{2}\right] \tag{2}
\end{equation*}
$$

The Compton scattering is usually observed in the lab frame where the electron is initially at rest. So let's work out the lab frame kinematics.
(b) Use energy and momentum conservation to show that in the lab frame

$$
\begin{equation*}
\frac{1}{\omega^{\prime}}=\frac{1}{\omega}+\frac{1-\cos \theta}{m_{e}} \tag{3}
\end{equation*}
$$

Note that for any fixed scattering angle $\theta \neq 0$, the energy of the scattered photon can never exceed $m_{e} /(1-\cos \theta)$, regardless of the initial photon's energy.
(c) Evaluate the phase-space factor in the lab frame and show that

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{\mathrm{lab}}}=\frac{\omega^{\prime 2}}{64 \pi^{2} m_{e}^{2} \omega^{2}} \times \overline{|\mathcal{M}|^{2}} \tag{4}
\end{equation*}
$$

(d) Evaluate $s-m^{2}$ and $u-m^{2}$ in the lab frame and derive the Klein-Nishina formula:

$$
\begin{equation*}
\frac{d \sigma(\text { Compton })}{d \Omega_{\mathrm{lab}}}=\frac{\alpha^{2}}{2 m_{e}^{2}} \times \frac{\omega^{\prime 2}}{\omega^{2}}\left[\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-\sin ^{2} \theta\right] \tag{5}
\end{equation*}
$$

(e) Show that for low-energy photons $\omega \ll m_{e}$, the Klein-Nishina formula agrees with the classical Thompson scattering of an EM wave off a free charged non-relativistic particle.
(f) Finally, show that for very high energy photons with $\omega \gg m_{e}$,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{\mathrm{lab}}}=\frac{\alpha^{2}}{2 m_{e} \omega} \times \frac{1}{1-\cos \theta} \tag{6}
\end{equation*}
$$

except for very small angles $\theta \lesssim \sqrt{m / \omega}$ where

$$
\frac{d \sigma}{d \Omega_{\mathrm{lab}}}=\frac{\alpha^{2}}{2 m_{e} \omega} \times \frac{2}{\theta^{2}+(2 m / \omega)} \times \begin{cases}1 & \text { for } \theta \gg \sqrt{2 m / \omega} \tag{7}\\ O(1) & \text { for } \theta \lesssim \sqrt{2 m / \omega}\end{cases}
$$

and the total Compton cross-section is

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=\frac{\pi \alpha^{2}}{m_{e} \omega} \times\left[\log \frac{\omega}{m_{e}}+O(1)\right] . \tag{8}
\end{equation*}
$$

3. Finally, consider the $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$pair production in the Standard Model of electroweak interactions. In pure QED, there is only one tree-level Feynman diagram contributing to this process, but in the Standard Model there are two more: one with a virtual Z^{0} vector in the s channel, and one with a virtual Higgs scalar. Fortunately, the Higgs field has very small couplings to electrons and muons, so its contribution may be neglected. But the Z^{0} 's contribution becomes important at high energies $E_{\mathrm{cm}} \gtrsim O\left(M_{z}\right)$.

The Z^{0} particle is a quantum of a massive neutral vector field Z^{μ}; its propagator is

$$
\begin{equation*}
{ }^{\mu} \sim^{Z} \sim^{\nu}=\frac{i}{q^{2}-M_{Z}^{2}+i \epsilon} \times\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{M_{Z}^{2}}\right) . \tag{9}
\end{equation*}
$$

The Z^{μ} field couples to the charged leptons (e, μ, τ) according to

$$
\begin{equation*}
\mathcal{L} \supset g^{\prime} Z_{\mu} \times \sum_{i=e, \mu, \tau} \bar{\Psi}_{i} \gamma^{\mu}\left(\sin ^{2} \theta_{w}-\frac{1-\gamma^{5}}{4}\right) \Psi_{i} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
g^{\prime}=\frac{e}{\sin \theta_{w} \cos \theta_{w}} \tag{11}
\end{equation*}
$$

and θ_{w} is the Weinberg's weak mixing angle; experimentally $\sin ^{2} \theta_{w}=0.232$.
(a) Write down the combined tree-level amplitude $\mathcal{M}\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$due to both virtual photon and virtual Z.
(b) Assume both the electrons and the muons to be ultra-relativistic $\left(E_{\text {c.m. }}=O\left(M_{Z}\right) \gg\right.$ m_{μ}, m_{e}) and evaluate the amplitude (a) for all possible particle helicities. (Use the center-of-mass frame.)
Hint:

$$
\begin{equation*}
\gamma^{\mu}\left(g_{V}+g_{A} \gamma^{5}\right)=g_{L} \gamma^{\mu} \frac{1-\gamma^{5}}{2}+g_{R} \gamma^{\mu} \frac{1+\gamma^{5}}{2} \tag{12}
\end{equation*}
$$

where $g_{L}=g_{V}-g_{A}$ and $g_{R}=g_{V}+g_{A}$.
(c) Calculate the total cross section $\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$and the forward-backward asymmetry

$$
\begin{equation*}
A=\frac{\sigma(\theta<\pi / 2)-\sigma(\theta>\pi / 2)}{\sigma(\theta<\pi / 2)+\sigma(\theta>\pi / 2)} \tag{13}
\end{equation*}
$$

as functions of the total energy $E_{\text {c.m. }}$. For simplicity, approximate $\sin ^{2} \theta_{w} \approx \frac{1}{4}$ and hence $g_{V} \approx 0$.

Note that in QED the tree-level pair production is symmetric with respect to $\theta \rightarrow \pi-\theta$; the asymmetry in the Standard Model arises from the interference between the virtualphoton and virtual- Z diagrams.

