
1. Saddle Point Method of Asymptotic Expansion

1.1 The Real Case.

Consider an integral of the form

I(A) =

x2∫
x1

dx f(x) eAg(x) (1.1)

where f and g are some real functions of x and A > 0 is a parameter. For large values of A

the integrand has narrow sharp peaks like this
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(in this particular example f(x) = x, g(x) = sinx and A = 100), and the integral is

completely dominated by the biggest peak. Each peak is located at a maximum of g(x), and

its width is O(1/
√
A ). So let x0 be the location of the biggest maximum of g between x1

and x2, and let’s change the integration variable from x to y according to

x = x0 +
y√
A
. (1.2)

Expanding Ag(x) in powers of y, we have

Ag(x) = Ag(x0) + 1
2y

2g′′(x0) +
y3g′′′(x0)

6
√
A

+ · · · (1.3)

(the first-derivative term is missing here because x0 is a maximum of g). Treating this

expansion as expansion in powers of 1/
√
A rather than y, we expand the exponential eAg(x)
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as

eAg(x) = eAg(x0) · ey
2g′′(x0)/2 ·

(
1 +

y3g′′′(x0)

6
√
A

+
y4g′′′′ + 3y6(g′′′)2

72A
+ · · ·

)
. (1.4)

Similarly, assuming f(x0) 6= 0, we have

f(x) = f(x0) ·
(

1 +
yf ′(x0)

f(x0)
√
A

+
y2f ′′(x0)

2f(x0)A
+ · · ·

)
. (1.5)

Substituting eqs. (1.4) and (1.5) into (1.1) gives us

I(A) =
f(x0) eAg(x0)

√
A

y2∫
y1

dy ey
2g′′(x0)/2 ·

(
1 +

∞∑
n=1

A−n/2Pn(y)

)
, (1.6)

where Pn are some polynomial functions of y; it is easy to show that Pn(y) are odd polyno-

mials for odd n and even polynomials for even n.

We assume that x1 < x0 < x2 — i.e., the maximum of g occurs strictly between x1 and

x2 and not at one of the end points. Then, in the large A limit, y1 → −∞ and y2 → +∞ as

O(
√
A), and since the gaussian factor ey

2g′′(x0)/2 decreases very rapidly for y → ±∞ (note

g′′(x0) < 0 because x0 is a maximum of g), we may extend the integration range of the

integral (1.6) to the entire real axis. (The relative error in I(A) due to this extension would

decrease with A faster than any power of A.) Therefore,

I(A) ≈ f(x0) eAg(x0)

√
A

+∞∫
−∞

dy ey
2g′′(x0)/2 ·

(
1 +

∞∑
n=1

A−n/2Pn(y)

)

= f(x0) eAg(x0)

√
2π

−Ag′′(x0)
×

(
1 +

∞∑
n=1

C2n

An

)
.

(1.7)

(All the odd C2n−1 vanish because P2n−1 are odd polynomials of y.) It is a straightforward

exercise to work out explicit expressions for the C2n in terms of derivatives of f and g; for

example C2 = −f ′′/4fg′′ + f ′g′′′/8f(g′′)2 + g′′′′/32(g′′)2− 5(g′′′)2/192(g′′)3. However, in the

interest of brevity, this exercise is left to the reader.
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The series in eq. (1.7) usually has zero radius of convergence and thus cannot be summed

for any finite value of A. However, partial sums of asymptotic series like (1.7) are mathe-

matically guaranteed to have the right asymptotic behavior in the large A limit, that is

1 +
∞∑
n=1

C2n

An
= 1 +O(1/A) = 1 + C2/A+O(1/A2) = 1 + C2/A+ C4/A

2 +O(1/A3) = · · ·

(1.8)

in the strict mathematical sence of O(1/An). Thus the precise meaning of eq. (1.7) is

I(A) = f(x0) eAg(x0)

√
2π

−Ag′′(x0)
·
(
1 +O(1/A)

)
= f(x0) eAg(x0)

√
2π

−Ag′′(x0)
·
(
1 + C2/A+O(1/A2)

)
= · · ·

(1.9)

in the large A limit.

1.2 The Complex Case.

Now consider the case of complex f(x) and g(x). Again, in the large A limit the integrand

is sharply peaked near the maximum of Reg(x), so we could proceed in exactly the same

manner as in the real case. There is however one crucial difference — the maximum of

Reg(x) is not necessarily the stationary point of the phase Img(x), so we have to add a

purely imaginary term
√
Ayg′(x0) to the expansion (1.3) for the Ag(x). Consequently, the

integral (1.6) becomes

I(A) =
f(x0) eAg(x0)

√
A

∫
dy ey

2g′′(x0)/2ey
√
Ag′(x0) ·

(
1 +

∞∑
n=1

A−n/2Pn(y)

)
, (1.10)

and the rapidly (in the large A limit) oscillating phase factor ey
√
Ag′(x0) severely suppresses

the asymptotic behavior of the integral. Specifically, the leading term in the expansion now
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gives us

I(A)
?−−−→

A→∞
f(x0) eAg(x0)

√
2π

−Ag′′(x0)
· exp

(
−Ag′2(x0)/g′′(x0)

)
, (1.11)

and the last factor here is very small because the real part of g′
2
(x0)/g′′(x0) is always

positive. Consequently, a maximum of Reg(x) does not contribute at full strength unless it

also happen to be a stationary point of the phase Img(x). The suppression is so strong that

the region around a maximum of Reg that is not a stationary point of the phase may no

longer dominate the large A asymptotic behavior of the integral. This calls for a different

approach in the complex case.

The approach that does work takes into account that proper complexification of the

integral (1.1) goes beyond making f and f complex functions of a real variable x. Instead,

we should take f and f to be complex analytic functions of a complex variable, and write a

contour integral

I(A) =

∫
Γ

dz f(z)eAg(z) (1.12)

over some contour Γ in the complex plane. A fundamental theorem of complex analysis states

that contour integrals of analytic functions are invariant under any continuous deformation

of the contour that does not affects its end points (if any) and does not drag contour over

any singularities of the integrand. Thus for the problem at hand, we deform the contour

until the maximum of Reg along the contour is also a stationary point of the phase Img.

Often, such deformation turns a real interval from x1 to x2 into a non-real contour in the

complex plane. This may seem like making the problem even more complex (in both senses

of the word) than it is, but in fact this leads to an easily obtainable large A asymptotics.

The points in the complex plane where a maximum of Reg (along some contour) coincides

with a stationary point of the phase Img are the zeros of the complex derivative g′(z). Near

such a point Reg(z) looks like a saddle or the top of a mountain pass — it has a maximum

along some directions in the complex plane and a minimum along other directions — hence

the two names for the asymptotic method described here: the saddle point method or the

mountain pass method. The mountain pass analogy is particularly apt, for a properly routed
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contour not only goes through a zero of g′, but crosses that zero in the manner of a highway

crossing a mountain pass, by starting in a valley (of low Reg), going up till it reaches the top

of the pass, then going down into another valley. Although a mountain goat might think of

a pass as a low point on a trail from one hill to another, thinking like a goat does not work

for computing integrals.

Once you have the right contour Γ, obtaining the large A asymptotics of the integral

(1.12) becomes analogous to the real case. First, we change the integration variable from z

to a new complex variable y related to z via

z = z0 +
ηy√
A
, (1.13)

where z0 is a zero of g′(z) and η is a unimodular complex number, |η| = 1. Second, we

expand the integrand of (1.12) into powers of 1/
√
A in the same manner as we did in the

real case; this gives us

I(A) =
ηf(z0) eAg(z0)

√
A

∫
Γ′

dy ey
2η2g′′(z0)/2 ·

(
1 +

∞∑
n=1

η−nA−n/2Pn(y)

)
, (1.14)

where Γ′ is the integration contour in the y plane. Γ′ always crosses the point y = 0, but

the direction of that crossing depends on η; to simplify our arguments, let us choose the η

that would make Γ′ tangent to the real axis at y = 0 (more specifically, dy along Γ′ should

be real and positive when y = 0). As A grows large, all points on the contour Γ′ scale as
√
A, so if it is tangent to the real axis for finite A, in the A → ∞ limit Γ′ simply becomes

the real axis with some appendages at infinity. Similar to the real case, contributions of very

large y do not affect the asymptotic large A behavior of the integral (1.14); hence

I(A) ≈ ηf(z0) eAg(z0)

√
A

+∞∫
−∞

dy ey
2η2g′′(z0)/2 ·

(
1 +

∞∑
n=1

η−nA−n/2Pn(y)

)

=

√
2π

A
exp
(
Ag(z0)

)
· ηf(z0)√
−η2g′′(z0)

· (1 +O(1/A)) ,

(1.15)

in complete analogy to the real formula (1.9). (The gaussian integral on the first line of

this formula is always convergent because the way we chose η assures that η2g′′(z0) has
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negative real part whenever the contour Γ in the z plane crosses the z0 point like a mountain

highway and not like a mountain goat trail). Note that the η parameter in the formula (1.15)

essentially cancels itself out, except that it helps determine the sign of the complex square

root
√
−η2g′′(z0) — its real part should be positive.

Although formulæ (1.9) and (1.15) differ very little, there is one important difference

between large A asymptotics of real and complex integrals I(A). The asymptotics of a real

integral (1.1) is always dominated by the global maximum of g(x) within the integration

range, which can be either the biggest local maximum x0 strictly within the range, or one

of the end points of that range (in which case eq. (1.9) does not apply). Local maxima of

g(x) outside the integration range of (1.1) never play any role in the asymptotic expansion

even if they are bigger than any maximum within the range.

For the complex integrals (1.12), determining which of the saddle points of g(z) in the

complex plane dominates the integral’s asymptotics is not so straightforward. Given the

freedom to deform the integration contour Γ, one cannot simply say that a saddle point

z0 is “within the integration range” while another saddle point is “outside the integration

range” since Γ can always be deformed to cross any point we like. Usually, the general

direction of the original contour and the phases of g′′ at saddle points which control the

directions in which those saddle points should be traversed give sufficient clues to determine

which saddle point is dominant and how to deform the contour to go through it. However,

such determination is somewhat of a black art best explained on specific examples; one such

example — the asymptotic behavior of Airy functions — shall be discussed in the next

chapter.
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2. Airy Functions

2.1 Construction.

Airy functions Ai and Bi are solutions of the linear differential equation

Ψ′′(z) − zΨ(z) = 0, (2.1)

which is a scale-invariant form of the Schrödinger equation for a quantum particle subject to

a constant force, i.e., linear potential. The relation between z and the particle’s coordinate

x is z = 3

√
2mF/h̄2 · (x− x0), where x0 is the classical turning point.

For Bessel functions experts, the easiest way to solve the equation (2.1) is to substitute

z = 2i
3 y

3/2, Ψ(z) = y1/3J(y). (2.2)

In terms of J(y) equation (2.1) becomes

J ′′(y) + 1
yJ
′(y) +

(
1− 1

9y2

)
J(y), (2.3)

which is the Bessel equation of the order 1/3. Thus, J(y) is a linear combination of the

Bessel functions J+1/3(y) and J−1/3(y).

However, it is more instructive to solve the equation (2.1) in a different way. Let us

perform a Laplace-like transform and look for a solution Ψ(z) in the form of a contour

integral

Ψ(z) =

∫
Γ

dt etzΦ(t); (2.4)

here Γ is some z-independent contour in the complex t plane and Φ(t) is an analytic function

of t that does not have any singularities on the contour Γ. With these assumptions, the second
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derivative Ψ′′(z) is related to t2Φ(t) via

Ψ′′(z) =

∫
Γ

dt etzt2Φ(t). (2.5)

On the other hand, zΨ(z) is related to the first derivative of Φ(t) via

zΨ(z) =
[
etzΦ(t)

]
δΓ
−
∫
Γ

dt etzΦ′(t) (2.6)

(to prove (2.6), substitute zetz = ∂etz/∂t and integrate by parts). Therefore, in terms of

Φ(t), the second order eq. (2.1) is equivalent to a first order equation

t2Φ(t) + Φ′(t) = 0, (2.7)

plus a boundary condition

etzΦ(t) = 0 on the boundary of the contour Γ. (2.8)

The general solution of the equation (2.7) is

Φ(t) = C exp
(
−t3/3

)
, (2.9)

where C is a constant; therefore, we have solved the Airy equation (2.1) in terms of the

contour integral

Ψ(z) = C

∫
Γ

dt exp
(
tz − 1

3t
3
)
. (2.10)

So far I haven’t specified the integration contour Γ. Since the integrand of eq. (2.10) has

no singularities for any finite t, only the end points of the contour would affect the integral;

in particular, any closed Γ would lead to the trivial solution Ψ(z) ≡ 0. On the other hand, an

open Γ with finite end points would violate the boundary condition (2.8). Hence, both end
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points of the contour Γ must be at the complex∞, and the directions in which the two ends

of the contour approach the ∞ would completely determine the integral (2.10) (the latter

follows from the lack of finite singularities of the integrand). Those directions of approach

are controlled by two considerations: First, one should approach the infinity along directions

in which the integrand decreases rather than increases; for the problem at hand, this allows

angles of approach between −π/6 and +π/6, between +π/2 and +5π/6, and between −5π/6

and −π/2, that is, within three white sectors on the following diagram:
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Γ1

Γ2

Γ3

(2.11)

The second consideration is that all approaches within the same sector are equivalent; con-

sequently, the two ends of the contour must belong to different sectors. These two consider-

ations give us a choice of three contours — Γ1 , Γ2 and Γ3 on figure (2.11) — corresponding

to three different solutions Ψ1(z), Ψ2(z) and Ψ3(z) of the Airy equation (2.1). Since the

combined contour Γ1 + Γ2 + Γ3 is shrinkable, it follows that Ψ1(z) + Ψ2(z) + Ψ3(z) ≡ 0,

so only two of the solutions are independent. The Airy functions Ai and Bi are the two

independent solutions

Ai(z) = iC

∫
Γ3

dt exp
(
tz − 1

3t
3
)
,

Bi(z) = C

∫
Γ2−Γ1

dt exp
(
tz − 1

3t
3
) (2.12)

that are real for real z. (The integral over Γ2 − Γ1 is the integral over Γ2, plus the integral

over −Γ1, the latter being Γ1 traversed in the direction opposite to the arrow on figure

(2.11).)
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2.2 Asymptotics

For the purpose of matching WKB solutions on two sides of a classical turning point we

need to know the asymptotic behaviors of the Airy functions for large real z, both positive

and negative. The easiest way to obtain this information is to use the saddle point method

described in the previous chapter. Although the integrals in eq. (2.12) do not have the exact

form (1.12), changing the integration variable from t to τ ≡ t/
√
|z| brings them to the

desired form:

Ai(z) = iC|z|1/2
∫
Γ3

dτ exp
(
|z|3/2( z|z|τ −

1
3τ

3)
)
,

Bi(z) = C|z|1/2
∫

Γ2−Γ1

dτ exp
(
|z|3/2( z|z|τ −

1
3τ

3)
) (2.13)

(the contours Γ1,2,3 are essentially scale invariant and hence can be used without change in

both t and τ planes).

For positive z, we have g(τ) = τ − τ3/3 which has saddle points at τ = ±1. The

positive saddle point at τ = +1 has a higher value of g(τ) than the negative saddle point

(g(τ = +1) = +2
3 while g(τ = +1) = +2

3), so it seems to be dominant. This dominance

however would only work for contours that traverse that point in the mountain-pass-like

fashion; given g′′(τ = +1) = −2, this means within π/4 of the horizontal axis. A quick

look at figure (2.11) shows that contour deformation that would make Γ traverse the point

τ = +1 horizontally is an easy thing to do for Γ = Γ2 or Γ = −Γ1 (η = +1 in both cases)

but is a very unnatural thing to do to the Γ3 contour. Hence, as z → +∞, the irregular

Airy function Bi behaves like

Bi(z) = 2 ·
√

2πCz1/2

√
2z3/2

e
2
3
z3/2
(
1 +O(z−3/2)

)
=

2
√
πC

z1/4
e

2
3
z3/2
(
1 +O(z−3/2)

)
(2.14)

(the factor of 2 is due to two contours Γ2 and −Γ1 contributing to Bi), while the asymptotics

of the regular Airy function Ai is controlled by the other saddle point τ = −1. At that saddle

point g′′(τ = −1) = +2, so we want the contour to traverse it in a direction within π/4 of the
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vertical axis. Given the general downward direction of the Γ3 contour, this suggests η = −i
for the deformed contour that crosses τ = −1, so the regular Airy function looks like

Ai(z) =

√
2π iCz1/2

i
√

2z3/2
e−

2
3
z3/2
(
1 +O(z−3/2)

)
=

√
πC

z1/4
e−

2
3
z3/2
(
1 +O(z−3/2)

)
(2.15)

for large positive z.

For negative z, g(τ) = −τ−τ3/3 and the saddle points are at τ = ±i. Both saddle points

have the same Reg(τ), namely zero, so we expect the two points to be co-dominant for both

Ai and Bi. The second derivative g′′(τ = ±i) = ∓2i, so the mountain-path-like directions

are NW to SE or SE to NW at τ = +i and SW to NE or NE to SW at τ = −i. Again, we

use the general direction of the contours on the diagram (2.11) to decide that the deformed

Γ3 should traverse the upper saddle point (τ = +i) in the NW to SE direction(η = e−πi/4)

and the lower saddle point (τ = −i) from NE to SW (η = e−3πi/4). Hence, using the general

asymptotic formula (1.15), we obtain

Ai(z) =

√
2π iC|z|1/2√

2|z|3/2
(
e−πi/4e−

2
3
i|z|3/2 + e−3πi/4e+ 2

3
i|z|3/2 + O(|z|−3/2)

)
(2.16)

=
2
√
πC

|z|1/4
(

cos
(
−π4 + 2

3 |z|
3/2
)

+ O(|z|3/2)
)

for the asymptotic behavior of the regular Airy function at large negative z. The irregular

Airy function can be studied in the same way: It is plain to see that the deformed Γ2 contour

should traverse only the τ = −i saddle point in the SW to NE direction (η = e+πi/4) while

the deformed −Γ1 contour should traverse only the τ = +i saddle point in the direction NW

to SE (η = e−πi/4). Therefore, for large negative z,

Bi(z) =

√
2π C|z|1/2√

2|z|3/2
(
e−πi/4e−

2
3
i|z|3/2 + e+πi/4e+ 2

3
i|z|3/2 + O(|z|−3/2)

)
(2.17)

=
2
√
πC

|z|1/4
(

cos
(
+π

4 + 2
3 |z|

3/2
)

+ O(|z|3/2)
)
.
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2.3 Airy Functions and the WKB Approximation.

Consider 1D motion of a quantum particle in some potential V (x). In the WKB ap-

proximation, the particle’s wave function in the classically allowed region (where V (x) < E)

looks like

Ψ(x) =
∑
±

C±√
k(x)

× exp

(
±i
∫
dx k(x)

)
, k(x) =

√
2M(E − V (x))

h̄
. (2.18)

The approximation is valid when the potential is smooth so that k(x) changes slowly on

the 1/k scale of distance. A similar approximation exists in the classically forbidden region

where V (x) > E, namely

Ψ(x) =
∑
±

C±√
κ(x)

× exp

(
±
∫
dx κ(x)

)
, κ(x) =

√
2M(V (x)− E)

h̄
; (2.19)

again, this approximation is valid as long as κ(x) changes slowly on the 1/κ scale.

Near a classical turning point x0 where V (x0) = E, both approximations (2.18) and

(2.19) break down. Instead, near x0 we treat the force F = −dV/dx as approximately

constant, so the wave function is approximately an Airy function of z = (x−x0)× 3

√
2MF/h̄2.

For z → +∞, the asymptotics of this particular Airy functions should match the WKB

approximation (2.18) for the allowed region, while for z → −∞, its asymptotics should

match the approximation (2.19) for the forbidden region.

Comparing eqs. (2.15), (2.14), (2.16), and (2.17) with eqs. (2.18) and (2.19), we see that

the solutions indeed match. Moreover, the matching tells us which solution in the allowed

region x > X0 goes with which solution in the forbidden region x < x0 and vice verse: The

solution which looks like

Ψ1(x) ≈ C√
κ(x)

exp

(
−

x∫
x0

dx′ κ(x′)

)
(2.20)

12



on the classically forbidden side becomes

Ψ1(x) ≈ 2C√
k(x)

cos

(
−π

4
+

x0∫
x

dx′ k(x′)

)
(2.21)

on the classically allowed side. The other solution looks like

Ψ2(x) ≈ C√
κ(x)

exp

(
+

x∫
x0

dx′ κ(x′)

)
(2.22)

on the classically forbidden side and becomes

Ψ2(x) ≈ C√
k(x)

cos

(
+
π

4
+

x0∫
x

dx′ k(x′)

)
(2.23)

on the classically allowed side.
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