
Spin–Statistics Theorem

Relativistic causality requires quantum fields at two spacetime points x and y separated

by a space-like interval (x−y)2 < 0 to either commute or anticommute with each other. The

spin–statistics theorem says that the fields of integral spins commute (and therefore must

be quantized as bosons) while the fields of half-integral spin anticommute (and therefore must

be quantized as fermions). The spin-statistics theorem applies to all quantum field theories

which have:

1. Special relativity, i.e. Lorentz invariance and relativistic causality;

2. Positive energies of all particles;

3. Hilbert space with positive norms of all states.
⋆

The theorem is valid for both free or interacting quantum field theories,
†
and in any spacetime

dimension d > 2. In these notes I shall prove the theorem for the free fields in four dimensions

and outline its generalization to d 6= 4; proving the theorem for the interactive fields is too

complicated for this class.

⋆ ⋆ ⋆

We saw in class (and in homework 5, problem 1) that relativistic causality does not allow

for quantum mechanics of a single particle or a fixed number of particles. Instead, one should

use a quantum field theory which allows for arbitrary numbers of particles and antiparticles.

So let us consider a generic Lorentz multiplet of quantum fields φ̂A whose quanta have

spin j and mass M . Free fields satisfy some kind of linear equations of motion which have

⋆ This is automatic when all states are physical. But covariant quantisation of EM and other gauge
fields expands the formal Fock space to include quanta of the un-physical polarizations, and also of
the ‘ghost’ fields which cancel them. The ghost quanta have negative norms and wrong spin-statistics
combinations (scalar fermions).

† In strongly interacting field theories, the physical particles are often bound states rather then quanta
of the fields one starts with. For example, in QCD the particles are mesons and baryons rather than
quarks or gluons. In such cases one should treat particles as quanta of some effective field theories, for
example, a theory of pseudoscalar fields for pions and Dirac fields for nucleons.
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plane-wave solutions with p2 = M2. Let p0 = +Ep = +
√

p2 +M2 and let

e−ipxfA(p, s) and e+ipxhA(p, s) (1)

be respectively the positive-frequency and negative-frequency plane-wave solutions. The s

here labels different wave polarizations for same pµ; it corresponds to particle spin states

(for M > 0) or helicities (for M = 0). The relation between spin and statistics follows from

the sums

FAB(p)
def
=

∑

s

fA(p, s) f
∗
B(p, s) and HAB(p)

def
=

∑

s

hA(p, s) h
∗
B(p, s) (2)

which satisfy two important lemmas:

Lemma 1: Both FAB(p) and HAB(p) can be analytically continues to off-shell momenta

(with p0 6= Ep) as polynomials in the four components of the pµ.

Lemma 2: Those polynomials are related to each other as

HAB(−pµ) = +FAB(+pµ) for particles of integral spin,

HAB(−pµ) = −FAB(+pµ) for particles of half-integral spin.
(3)

I shall prove the two lemmas later in these notes. Right now, I want to show how they lead

to the spin-statistics theorem.

A free quantum field is a superposition of plane-wave solutions with operatorial coeffi-

cients, thus

φ̂A(x) =

∫

d3p

(2π)3
1

2Ep

∑

s

[

e−ipxfA(p, s) â(p, s) + e+ipxhA(p, s) b̂
†(p, s)

]

p0=+Ep

,

φ̂†B(y) =

∫

d3p

(2π)3
1

2Ep

∑

s

[

e−ipyh∗B(p, s) b̂(p, s) + e+ipyf∗B(p, s) â
†(p, s)

]

p0=+Ep

.

(4)

(Without loss of generality we assume complex fields and charged particles; for the neutral

particles we would have b̂ ≡ â and b̂† ≡ â†.) Regardless of statistics, positive particle energies
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require â†(p, s) and b̂†(p, s) to be creation operators while â(p, s) and b̂(p, s) are annihilation

operators, thus

â†(p, s) |0〉 = |1(p, s,+)〉 , b̂†(p, s) |0〉 = |1(p, s,−)〉 , â(p, s) |0〉 = b̂(p, s) |0〉 = 0.

(5)

Consequently, in a Fock space of positive-definite norm,

〈0| â(p, s) â†(p′, s′) |0〉 = 〈0| b̂(p, s) b̂†(p′, s′) |0〉 = +2Ep(2π)
3δ(3)(p− p′)δs,s′ , (6)

while all the other “vacuum sandwiches” of two creation or annihilation operators vanish

identically. Therefore, regardless of particles’ statistics, vacuum expectation values of prod-

ucts of two fields at distinct points x and y are given by

〈0| φ̂A(x) φ̂
†
B(y) |0〉 = +

∫

d3p

(2π)3
e−ip(x−y)

2Ep

×
∑

s

fA(p, s) f
∗
B(p, s) (7)

and

〈0| φ̂†B(y) φ̂A(x) |0〉 = +

∫

d3p

(2π)3
e+ip(x−y)

2Ep

×
∑

s

hA(p, s) h
∗
B(p, s). (8)

And at this point, we can use the spin sums (2) and their polynomial dependence on the

particle’s 4–momenta (Lemma 1) to calculate

〈0| φ̂A(x) φ̂
†
B(y) |0〉 =

∫

d3p

(2π)3
1

2Ep

e−ip(x−y)FAB(p)
∣

∣

∣

p0=+Ep

= FAB(+i∂x)D(x−y) (9)

where

D(x− y) =

∫

d3p

(2π)3
1

2Ep

e−ip(x−y)
∣

∣

∣

p0=+Ep

and FAB(+i∂x) is a differential operator constructed as an appropriate polynomial of the

i∂µm instead of the pµ. Likewise

〈0| φ̂†B(y) φ̂A(x) |0〉 =

∫

d3p

(2π)3
1

2Ep

e+ip(x−y)HAB(p)
∣

∣

∣

p0=+Ep

= HAB(−i∂x)D(y − x).

(10)

As explained in class, for a space-like distance between points x and y, D(y − x) =

+D(x − y). At the same time, the differential operators FAB(+i∂x) and HAB(−i∂x) are
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related to each other according to Lemma 2 (eqs. (3)). Therefore, regardless of particles’

statistics, for (x− y)2 < 0

〈0| φ̂A(x) φ̂
†
B(y) |0〉 = + 〈0| φ̂†B(y) φ̂A(x) |0〉 for particles of integral spin,

〈0| φ̂A(x) φ̂
†
B(y) |0〉 = −〈0| φ̂†B(y) φ̂A(x) |0〉 for particles of half-integral spin.

(11)

On the other hands, relativistic causality requires for (x− y)2 < 0

φ̂A(x) φ̂
†
B(y) = +φ̂†B(y) φ̂A(x) for bosonic fields,

φ̂A(x) φ̂
†
B(y) = −φ̂†B(y) φ̂A(x) for fermionic fields,

}

regardless of particle’s spin. (12)

And the only way eqs. (11) and (12) can both hold true at the same time if all particles of

integral spin are bosons and all particles of half-integral spin are fermions.

Indeed, for bosonic particles, the creation and annihilation operators commute with each

other except for

[â(p, s), â†(p′, s′)] = +2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

[b̂†(p, s), b̂(p′, s′)] = −2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

(13)

and therefore the quantum fields commute or do not commute according to

[

φ̂A(x), φ̂
†
B(y)

]

=

∫

d3p

(2π)3
1

2Ep

∑

s

(

e−ip(x−y)fA(p, s)f
∗
B(p, s) − e−ip(x−y)hA(p, s)h

∗
B(p, s)

)

= FAB(i∂x)D(x− y) − HAB(−i∂x)D(y − x)

= FAB(i∂x)
(

D(x− y) − (−1)2j D(y − x)
)

(14)

where j is the particle’s spin, cf. eq. (11). For particles of integral spin, this commutator

duly vanishes when points x and y are separated by a space-like distance. But for particles

of half-integral spin, the two terms on the last line of eq. (14) add up instead of canceling

each other, and the fields φ̂A(x) and φ̂†B(y) fail to commute — which violates relativistic

causality. To avoid this violation, bosonic particles must have integral spins only.
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Likewise, for fermionic particles, the creation and annihilation operators anticommute

with each other except for

{â(p, s), â†(p′, s′)} = +2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

{b̂†(p, s), b̂(p′, s′)} = +2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

(15)

and therefore the quantum fields anticommute or do not anticommute according to

{

φ̂A(x), φ̂
†
B(y)

}

=

∫

d3p

(2π)3
1

2Ep

∑

s

(

e−ip(x−y)fA(p, s)f
∗
B(p, s) + e−ip(x−y)hA(p, s)h

∗
B(p, s)

)

= FAB(i∂x)D(x− y) + HAB(−i∂x)D(y − x)

= FAB(i∂x)
(

D(x− y) + (−1)2j D(y − x)
)

.
(16)

This anticommutator vanishes when (x − y)2 < 0 for half-integral j but not for integral j.

Hence, to maintain relativistic causality, fermionic particles must have half-integral spins

only.

⋆ ⋆ ⋆

The spin-statistics theorem works in spacetime dimensions d 6= 4 modulo generalization

of the term ‘spin’. As explained in class a while ago, massive particles form ‘spin’ multiplets

of the SO(d− 1) group of space rotations while massless particles form ‘helicity’ multiplets

of the SO(d − 2) group of transverse rotations. For d > 4, all such multiplets fall into two

classes: The single-valued tensor multiplets for which R(2π) = +1, and the double-valued

spinor multiplets for which R(2π) = −1. The relation between spin sums (2) follows this

distinction:

HAB(−pµ) = FAB(+pµ)× R(2π), (17)

which generalizes Lemma 2 to higher dimensions. The statistics follow the sign in eq. (17),

thus particles invariant under 2π rotations must be bosons while particles for which R(2π) =

−1 must be fermions.

For D = 3 (two space dimensions) the situation is more complicated because the SO(2)

group of space rotations is abelian. Its multiplets are singlets of definite angular momentum
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mj , but in principle, this angular momentum does not have to be integer or half integer.

Instead, it could be fractional, or even irrational, so a 2π rotation could multiply quanta by

some complex phase R(2π) = e2πimj 6= ±1. Such quanta are neither bosons nor fermions

but anyons obeying fractional statistics: |α, β〉 = |β, α〉 × e±2πimj , where the sign depends

on how the two particles are exchanged in two space dimensions. Note however that even in

this case, the statistics follows the spin mj .

In condensed matter, anyons exists as 2D quasiparticles in thin layers of semiconductors

in a magnetic fields, and they play an important role in fractional quantum Hall effect. But

in relativistic theories in 2 + 1 dimensions, one cannot make anyons out of free or weakly

interacting quantum fields. Indeed, the fields transform as multiplets of the non-abelian

SO(2, 1) Lorentz group, so their spins are quantized and 2π rotations work as R(2π) :

φ̂A 7→ ±φ̂A. Consequently, if the fields are linear combinations of creation and annihilation

operators as in eqs. (4) — or even approximately linear combinations — then the operators

and hence the particles must have R(2π) = ±1 and therefore either integer of half-integer mj .

In either case, the spin-statistics theorem works as usual: Particles with integral mj are

bosons while particles with half-integral mj are fermions.

⋆ ⋆ ⋆

At this point, I am done with the spins-statistics theorem itself. But to complete my

argument, I need to prove the two lemmas about the spin sums (2), and that would take

some group theory.

Let me start with the Lorentz symmetries of the field multiplet φ̂A(x),

x′µ = Lµ
νx

ν , φ̂′A(x
′) =

∑

B

M B
A (L)× φ̂B(x). (18)

The plane waves (1) of these fields transform according to

fA(p, s) 7→ fA(Lp, s) =
∑

B

M B
A (L)

∑

s′

C s′

s (L, p)× fB(p, s
′),

hA(p, s) 7→ hA(Lp, s) =
∑

B

M B
A (L)

∑

s′

C s′

s (L, p)× hB(p, s
′),

(19)

where C s′

s (L, p) are some unitary matrices acting on polarization states s. When we take
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the spin sums (2), those matrices cancel out, and we get

FAB(Lp) =
∑

C,D

M C
A (L)M∗D

B (L)× FCD(p),

HAB(Lp) =
∑

C,D

M C
A (L)M∗D

B (L)×HCD(p).
(20)

In other words, the spin sums FAB and HAB are Lorentz-covariant functions of the momen-

tum p.

Covariant functions of vectors or tensors are governed by the Wigner–Eckard theorem and

its generalizations.
⋆
As an illustration, consider a matrix Qab(v) of functions of a 3D vector

v where the indices a and b run over components of some multiplet of the rotation symmetry

SO(3). The multiplet must be complete but may be reducible, thus a, b ∈ (j1)⊕ (j2)⊕ · · · .

If the matrix Qab(v) transforms covariantly under rotations R, i.e.

Qab(Rv) =
∑

c,d

M c
a (R)M d

b (R)×Qcd(v), (21)

then Wigner–Eckard theorem tells us that

Qab(v = vn) =

j(a)+j(b)
∑

ℓ=|j(a)−j(b)|

qℓ(v)

+ℓ
∑

m=−ℓ

vℓYℓ,m(n)× Clebbsch(a, b|ℓ,m), (22)

where qℓ(v) depend only on ℓ and the magnitude v of the vector. The spherical harmonics

Yℓ,m(θ, φ) are homogeneous polynomials (degree ℓ) of cos θ and sinθ × e±iφ, which makes

vℓ×Yℓ,m(n) homogeneous (degree ℓ) polynomials of the Cartesian components vx, vy and vz.

Consequently, for the vector of fixed magnitude v2 = v2 — which makes the qℓ(v) coeffi-

cients into constants — all the matrix elements Qa,b(v) become polynomials of (vx, vy, vz)

comprising terms of net degree ℓ ranging from |j(a)− j(b)| to j(a) + j(b).

⋆ From the mathematical point of view, the Wigner–Eckard theorem is about covariant functions of
vectors or tensors in various representations of the rotation group. In QM textbooks, it is usually stated
in terms of matrix elements of vector or tensor operators between states of given angular momenta.
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In d > 3 dimensions — Euclidean or Minkowski — Wigner–Eckard theory gives us

formulae similar to eq. (22), except for more complicated indexologies of spin or Lorentz

multiplets and their members. In particular, in 3 + 1 Minkowski dimensions, the Lorentz

algebra amounts to two non-hermitian angular momenta J+ and J−,
†
so instead of |j,m〉

states we have
∣

∣j+, m+, j−, m−
〉

. Also, the 4D vectors have j+ = j− = 1
2 , so the 4D spherical

harmonics (or rather hyperboloid harmonics in Minkowski spacetime) all have j+ = j− = J ,

but J takes both integer and half-integer values. Consequently, the Wigner–Eckard theorem

for Lorentz-covariant functions FAB and HAB of the 4-momentum pµ says:

FAB(p) =

Jmax
∑

J=Jmin

fJ(M)
∑

−J≤m+≤J

−J≤m−≤J

M2JYJ,m+,m−(pµ/M)× Clebbsch(A,B|J,m+, J,m−),

HAB(p) =
Jmax
∑

J=Jmin

hJ(M)
∑

−J≤m+≤J

−J≤m−≤J

M2JYJ,m+,m−(pµ/M)× Clebbsch(A,B|J,m+, J,m−),

(24)

for some functions fJ(M) and hJ(M) of the particle mass M =
√

p2. Similar to 3D spherical

harmonics, the 4D hyperboloid harmonics M2JYJ,m+,m−(pµ/M) are homogeneous polynomi-

als of degree 2J in (p0, p1, p2, p3). Consequently, for fixed mass M and on-shell momenta, all

the fJ and hJ are constants and the spin sums FAB(p) and HAB(p) are polynomial functions

of px,y,z and E =
√

p2 +M2.

In other Minkowski dimensions, there are formulae similar to eqs. (24), except that there

are more m-like indices, the summation ranges are different, and the Clebbsch–Gordan co-

efficients are messier than in 3D or 4D. But in all dimensions, the hyperboloid harmonics

YJ,m,...,m(nµ) are homogeneous polynomials of some degree in (n0, n1, . . . , nd−1). Conse-

quently, for fixed mass M and on-shell momenta, FAB(p) and HAB(p) can be written as

polynomial functions of the (p1, . . . , pd−1) and E =
√

p2 +M2.

† In terms of the usual Lorentz generators Jµν = −Jνµ, J
± = J ± iK where J is the 3D angular

momentum and K is the 3-vector of Lorentz boost generators. In components, J ij = ǫijkJk and
J i0 = −J0i = Ki. The J

± operators are not hermitian, but they do have commutation relation of two
independent angular momenta,

[

J±
i , J±

j

]

= iǫijkJ
±
k ,

[

J±
i , J∓

j

]

= 0. (23)
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Once we have the FAB(p) and HAB(p) written as polynomials of the d components of pµ,

we may analytically continue them as polynomials to arbitrary off-shell momenta (p0 6= Ep),

or even to complex momenta. The coefficients of such polynomials may be non-polynomial

functions ofM2 — for example, (6p±M)αβ for the Dirac spinor fields, or (−gµν+M−2pµpν) for

the massive vector fields — but that’s OK because off shell, M2 is just a constant unrelated

to the pµ.

Technically, the off-shell continuations of the polynomials FAB(p
µ) and HAB(p

µ) are

ambiguous modulo terms of the form (p2 −M2)× some polynomial of pµ, because all such

terms vanish identically on-shell. But physically, this ambiguity is irrelevant to any ‘vacuum

sandwiches’ of two fields or (anti) commutators of fields. For example, consider eq. (9): If

I change the analytic continuation of the FAB(p) to the off-shell momenta by (p2 −M2) ×

some polynomial of pµ, the differential operator FAB(i∂x) will change by (∂2x +M2)× some

differential operator. But this change will have no effect on the FAB(i∂x)D(x − y) on the

right hand side of eq. (9) because (∂2x+M2)D(x−y) = 0. Likewise, ambiguity in analytically

continuing the HAB(p
µ) to off-shell momenta makes no difference to the right hand side of

eq. (10).

This completes my proof of Lemma 1: In any dimension, the spin sums FAB(p) and

HAB(p) may be analytically continued to off-shell momenta (or even complex momenta) as

polynomials in the pµ. The continuation is ambiguous modulo polynomials proportional to

the (p2 −M2), but this ambiguity is physically irrelevant.

Finally, I need to prove Lemma 2. For simplicity, I shall work in d = 3 + 1 dimensions

only, although the Lemma works in all Minkowski dimensions according to eq. (17). The

quantum fields φ̂A(x) form some kind of a Lorentz multiplet; allowing for its reducibility,

we generally have A ∈ (j+1 , j
−
1 )⊕ (j+2 , j

−
2 )⊕ · · ·. Now consider the Wigner–Eckard eqs. (24)

for indices belonging to particular irreducible multiplets, A ∈ (j+A , j
−
A ) and B ∈ (j+B , j

−
B ).

For every hyperboloid harmonic YJ,m+,m− which contributes to the FAB(p) and HAB(p),

the angular momenta (J, j+A , j
+
B ) should satisfy the triangle inequality, and so should the

(J, j−A , j
−
B). Hence, the summation over J ranges

from Jmin = max
(

|j+A − j+B |, |j
−
A − j−B |

)

to Jmax = min
(

(j+A + j+B ), (j
−
a + j−B )

)

,
(25)
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and for each J , both m+ and m− range from −J to +J . Moreover, J , m+, and m− are

either all integers or all half-integers according to

(−1)2J = (−1)2m
+

= (−1)2m
−

= (−1)2j
+

A × (−1)2j
+

B = (−1)2j
−
A × (−1)2j

−
B . (26)

Now, the hyperboloid harmonics YJ,m+,m−(pµ/M) are homogeneous polynomials of degree

2J , and according to eq. (26), all the harmonics contributing to any particular matrix element

FAB orHAB have similar 2J modulo 2. Therefore, each matrix element FAB orHAB is either

an even polynomial of the pµ or an odd polynomial. Consequently, when we analytically

continue such polynomials to off-shell momenta such as −pµ = (−E,−p), we find that

FAB(−pµ) = FAB(+pµ)× (−1)2j
+

A (−1)2j
+

B ,

HAB(−pµ) = HAB(+pµ)× (−1)2j
+

A (−1)2j
+

B ,
(27)

These sign relations provide the first half of our proof. The second half is based on the

CPT theorem which states that simultaneous reversal of all charges (C), of space parity (P),

and of time’s direction (T) is always an exact symmetry of any quantum field theory. This

symmetry acts on quantum fields according to

CPT : φ̂A(x) 7→ φ̂†A(−x)× (−1)2J
−
A ,

CPT : φ̂†A(x) 7→ φ̂(−x)A × (−1)2J
+

A ,
(28)

where the (−1)2J
−
A sign in the first line is the (j+A , j

−
A ) representation of the proper-but-not-

orthochronous Lorentz transform PT : xµ → −xµ.
⋆
In the second line, this sign is changed

to (−1)2J
+

A because hermitian conjugation exchanges J+ ↔ J− and hence j+ ↔ j− of any

field: If φ̂A ∈ (j+, j−), then φ̂†A ∈ (j−, j+). Applying eqs. (28) to the plane waves (1) and

re-interpreting the results in terms of CPT action on the particles — preserving E and p

⋆ For example, Dirac spinor fields comprise a reducible Lorentz multiplet (j+ = 1

2
, j− = 0) ⊕ (j+ =

0, j− = 1

2
). The (−1)2j

−

A acts on this multiplet as the −γ5 matrix,
(

+1 0

0 −1

)

in the Weyl basis. And

indeed, the CPT symmetry acts on Dirac fields according to Ψ̂′(x) = −γ5Ψ̂∗(−x).
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but reversing spins and charges — we find that

hA(+p,−s) = fA(+p,+s)× (−1)2J
−
A , h†A(+p,−s) = f †A(+p,+s)× (−1)2J

+

A . (29)

This gives us a relation between the positive-frequency and the negative-frequency plane

waver, and consequently between the two spin sums (2):

HAB(p) = FAB(p)× (−1)2J
−
A (−1)2J

+

B . (30)

I have derived this relation for the actual spin sums and hence for the on-shell momenta

only. Analytic continuation of the FAB(p
µ) and HAB(p

µ) to the off-shell momenta is am-

biguous modulo polynomials of pµ proportional to the (p2 −M2), and this ambiguity may

spoil the relation (30) for the off-shell momenta. But fortunately, the ambiguities of this

kind are physically irrelevant (cf. the argument two pages above), and so without loss of

generality, we can impose the relation (30) to the off-shell FAB(p
µ) and HAB(p

µ).

Now, combining the sign relations (27) and (30), we get

HAB(−pµ) = FAB(+pµ)× (−1)2j
+

A (−1)2j
−
A . (31)

Consider the sign factor on the right hand side: Although different field indices Amay belong

to different (j+, j−) Spin(3, 1) multiplets, the net sign (−1)2j
+

A (−1)2j
−
A has to be the same

for all A because it determines how the fields transform under 2π rotations. Also, particles’

spin j follows from adding j+ and j− of the fields as angular momenta, hence

∀A :
∣

∣j+A − j−A
∣

∣ ≤ j ≤ j+A + j−A and (−1)2j
+

A (−1)2j
−
A = (−1)2j . (32)

Consequently, eqs. (31) become

HAB(−pµ) = (−1)2j × FAB(+pµ), (33)

or equivalently eqs. (11)of Lemma 2. This completes my proof.
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