
ANNIHILATION

In these notes I explain the e+e− → γγ annihilation process. At the tree level of QED,

there are two diagrams related by interchanging of the two photons in the final state:

q

e− e+

γ1 γ2

+
q̃

e− e+

γ1 γ2

(1)

The net amplitude due to these diagrams is

M = e∗µ(k1, λ1) e
∗
ν(k2, λ2)×Mµν ,

Mµν = Mµν
1 + Mµν

2 ,

iMµν
1 = v̄(e+)(ieγν)

i

6q −m
(ieγµ)u(e−),

iMµν
2 = v̄(e+)(ieγµ)

i

6 q̃ −m
(ieγν)u(e−),

(2)

where q = p− − k1 = k2 − p+ and q̃ = p− − k2 = k1 − p+. Note the opposite orders of the

γµ and γν vertices in the M1 and the M2 amplitudes. We may re-write these amplitudes

without matrix denominators using

1

6q −m
=

6q +m

q2 −m2
=

6q +m

t−m2
and

1

6 q̃ −m
=

6 q̃ +m

q2 −m2
=

6 q̃ +m

u−m2
. (3)

Consequently,

Mµν
1 =

−e2

t−m2
× v̄γν(6q +m)γµu,

Mµν
2 =

−e2

u−m2
× v̄γµ(6 q̃ +m)γνu.

(4)
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Ward Identity

Before we go any further, lets check the Ward identities for the annihilation amplitude:

for the first photon we should have k1µM
µν = 0, and for the second photon k2νM

µν = 0.

Let’s start with the first photon and the first diagram. Multiplying the second factor in the

first eq. (4) by k1µ, we have

v̄γν(6q +m)γµu× k1µ = v̄γν(6p−−6k1 +m) 6k1u

= v̄γν(6p− +m) 6k1u 〈〈because 6k1 6k1 = k21 = 0〉〉

= v̄γν
(

2(p−k1)− 6k1(6p− −m)
)

u

= 2(p−k1)× v̄γνu 〈〈because (6p− −m)u = 0〉〉

= (m2 − t)× v̄γνu

(5)

and consequently

Mµν
1 × k1µ = +e2 × v̄γνu . (6)

Note the non-zero right hand side — the first diagram does not satisfy the Ward identity all

by itself. As for the second diagram, we have

v̄γµ(6 q̃ +m)γνu× k1µ = v̄ 6k1(6k1−6p+ +m)γνu

= v̄ 6k1(−6p+ +m)γνu 〈〈because 6k1 6k1 = k21 = 0〉〉

= v̄
(

−2(p+k1) + (6p+ +m) 6k1

)

γνu

= −2(p+k1)× v̄γνu 〈〈because v̄(6p+ +m) = 0〉〉

= −(m2 − u)× v̄γνu

(7)

and consequently

Mµν
2 × k1µ = −e2 × v̄γνu . (8)

Again we have a non-zero result — the second diagram also does not satisfy the Ward identity

all by itself. However, the right hand sides of eqs. (6) and (8) cancel each other, so together,

2



the two diagrams do satisfy the Ward identity:

Mµν × k1µ = Mµν
1 × k1µ + Mµν

2 × k1µ = 0. (9)

This is an example of a general rule: The Ward Identity does not work diagram by diagram

but only for entire amplitudes, or for partial sums of all diagrams related by permutations

of photonic vertices on the same fermionic line.

The Ward identity Mµν×k2ν = 0 for the second photon works similarly to the first, and

I see no point in repeating the argument. Indeed, it would be an exactly similar argument

because the net annihilation amplitude is symmetric with respect to the two photons.

Summing over the Spins and Polarizations

Earlier in class I explained how to use Ward identities to sum |M|2 over polarizations

of the two photons:
∑

λ1,λ2

|M|2 = +MµνM∗
µν . (10)

Combining the two diagrams, we have

∑

λ1,λ2

|M|2 = Mµν
1 M∗

1µν + Mµν
2 M∗

2µν + 2ReMµν
1 M∗

2µν . (11)

Note that this formula works despite the fact that Mµν
1 and Mµν

2 do not satisfy the Ward

identities by themselves — it’s enough that the sum Mµν
1 + Mµν

2 satisfies the identities.

Thus, in light of eqs. (4),

∑

λ1,λ2

|M|2 =
e4

(t−m2)2
× v̄γν(6q +m)γµu× ūγµ(6q +m)γνv

+
e4

(u−m2)2
× v̄γµ(6 q̃ +m)γνu× ūγν(6 q̃ +m)γµv

+
2e4

(t−m2)(u−m2)
× Re

(

v̄γν(6q +m)γµu× ūγν(6 q̃ +m)γµv
)

.

(12)

This takes care of the photon polarizations. The next step is to average over spins of
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the initial electron and positron. Proceeding is usual, we have

|M|2 ≡ 1
4

∑

s−,s+

∑

λ1,λ2

|M|2

=
e4

(t−m2)2
× A11 +

e4

(u−m2)2
× A22 +

2e4

(t−m2)(u−m2)
× Re A12 ,

(13)

where

A11 = 1
4 Tr

(

(6p+ −m)γν(6q +m)γµ(6p− +m)γµ(6q +m)γν

)

,

A22 = 1
4 Tr

(

(6p+ −m)γµ(6 q̃ +m)γν(6p− +m)γν(6 q̃ +m)γµ

)

,

A12 = 1
4 Tr

(

(6p+ −m)γν(6q +m)γµ(6p− +m)γν(6 q̃ +m)γµ

)

,

(14)

Traceology 1

Our next task is to evaluate the traces (14). Let’s start with the A11.

Back in homework set #8 (problem 2.d), you saw that γµγµ = 4 and γµ 6 pγµ = −2 6 p.

Applying these formulae to the expression inside the trace in A11, we have

γµ(6p− +m)γµ = −2(6p− − 2m), γν(6p+ −m)γν = −2(6p+ + 2m), (15)

and consequently

A11 = Tr
(

(6p+ + 2m)(6q +m)(6p− − 2m)(6q +m)
)

. (16)

Next, we expand the parentheses inside this trace and throw away terms with odd numbers

of momenta 6p or 6q. This gives us

A11 = Tr(6p+ 6q 6p− 6q) + m2 Tr(6p+ 6p−) − 4m2 Tr(6q 6q)

+ 2× 2m2 Tr(6p− 6q) − 2× 2m2 Tr(6p+ 6q) − 4m4 Tr(1)

= 8(p+q)(p−q) − 4(p+p−) q
2 + 4m2(p+p−)

− 16m2q2 + 16m2(p+q) − 16m2(p−q) − 16m4 .

(17)

Finally, let’s express all the kinematic quantities in terms of the Mandelstam’s variables
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s, t, and u. Using p2− = p2+ = m2 and k21 = k22 = 0, we have

q2 = (p− − k1)
2 = t,

qp− = (p− − k1)p− = m2 − p−k1 = m2 + 1
2(t−m2) = +1

2(m
2 + t),

qp+ = (k2 − p+)p+ = p+k2 − m2 = −1
2(t−m2) − m2 = −1

2(t+m2),

p−p+ = 1
2(s− 2m2).

(18)

Consequently, the right hand side of eq. (17) becomes

A11 = −2(t+m2)2 − 2(s− 2m2)t + 2m2(s− 2m2)

− 16m2 t + 8m2(t +m2) + 8m2(t +m2) − 16m4

= −2(t+m2)2 − 2(t−m2)× (s− 2m2 = −t− u)

= 2tu − 6tm2 − 2um2 − 2m4

= 2(t−m2) (u− 3m2) − 8m4.

(19)

This completes our evaluation of the first trace.

Now consider the second trace A22. Instead of working through the calculation, we may

use the photon exchange / crossing symmetry between the two diagrams (1). This symmetry

exchanges t ↔ u and also A11 ↔ A22, thus

A22 = 2(u−m2) (t− 3m2) − 8m4. (20)

Traceology 2

Now we need to evaluate the third trace A12 which accounts for the interference between

the two diagrams (1). This trace is more complicated, so let’s start by simplifying the

γν · · · γν part. Back in homework #8, we had

γν 6aγν = −2 6a, γν 6a 6bγν = 4(ab), γν 6a 6b 6cγν = −2 6c 6b 6a, (21)

which now gives us

γν(6q +m)γµ(6p− +m)γν = −2m2γµ + 4m(q + p−)
µ − 2 6p−γ

µ 6q . (22)

Plugging this formula into eq. (14) for the A12 and remembering that we need an even
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number of slash-momentum factors inside the trace, we obtain

A12 = 1
4 Tr

(

γν(6q +m)γµ(6p− +m)γν × (6 q̃ +m)γµ(6p+ −m)
)

= m(q + p−)
µ × Tr

(

mγµ 6p+− 6 q̃γµm
)

− 1
2 Tr

(

(m2γµ+ 6p−γ
µ 6q)× (6 q̃γµ 6p+ − m2γµ)

)

= m(q + p−)
µ × 4m(p+ − q̃)µ

− 1
2 Tr

(

6p−γ
µ 6q 6 q̃γµ 6p+ − m2 6p−γ

µ 6qγµ + m2γµ 6 q̃γµ 6p+ − m4γµγµ

)

= 4m2(q + p−)
µ(p+ − q̃)µ

− 1
2 Tr

(

4(qq̃) 6p− 6p+ + 2m2 6p− 6q − 2m2 6 q̃ 6p+ − 4m4
)

= 4m2
(

−(qq̃) + (qp+) − (q̃p−) + (p−p+)
)

− 8(qq̃)(p−p+) − 4m2(p−q) + 4m2(q̃p+) + 8m4.

(23)

Finally, we need to work out the kinematics. Besides eqs. (18), we have

q̃p− = (p− − k2)p− = m2 − k2p− = m2 + 1
2(u−m2) = +1

2(u+m2),

q̃p+ = (k1 − p+)p+ = k1p+ − m2 = −1
2(u−m2) − m2 = −1

2(u+m2),

q̃q = (p− − k2)(p− − k1) = p2− − p−(k1 + k2 = p− + p+) + k1k2

= k1k2 − p−p+ = 1
2s − 1

2(s− 2m2) = m2.

(24)

Therefore,

A12 = 4m2 ×
(

−m2 − 1
2(t+m2) − 1

2(u+m2) + 1
2(s− 2m2)

)

− 4m2(s− 2m2) − 2m2(t +m2) − 2m2(u+m2) + 8m4

= −2m2 × (2t+ 2u+ s)

= −2m2 × (t+ u+ 2m2)

= −2m2(t−m2) − 2m2(u−m2) − 8m4.

(25)
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Annihilation Summary

Having worked out the traces, let’s plug them into eq. (13):

|M|2 =
e4

(t−m2)2
×
(

2(t−m2)(u− 3m2) − 8m4
)

+
e4

(u−m2)2
×
(

2(u−m2)(t− 3m2) − 8m4
)

+
2e4

(t−m2)(u−m2)
×
(

−2m2(t−m2) − 2m2(u−m2) − 8m4
)

= 2e4
(

u− 3m2

t−m2
+

t− 3m2

u−m2
−

2m2

u−m2
−

2m2

t−m2

)

− 8e4m4

(

1

t−m2
+

1

u−m2

)2

= 2e4
[

u−m2

t−m2
+

t−m2

u−m2
− 4m2

(

1

t−m2
+

1

u−m2

)

− 4m4

(

1

t−m2
+

1

u−m2

)2]

,

(26)

or more compactly

|M|2 = 2e4

[

u−m2

t−m2
+

t−m2

u−m2
+ 1 −

(

1 +
2m2

t−m2
+

2m2

u−m2

)2
]

. (27)

This is our final result; the rest is kinematics.

Annihilation Kinematics

In the center of mass frame, pµ∓ = (E,±p) where E = +
√

p2 +m2, and kµ1,2 = (ω,±k)

where ω = |k| = E. Consequently,

s = 4E2,

t = −(p− k)2 = −p2 − E2 + 2|p|E cos θ,

u = −(p+ k)2 = −p2 − E2 − 2|p|E cos θ,

t−m2 = −2E(E − |p| cos θ),

u−m2 = −2E(E + |p| cos θ),

(28)
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and therefore

u−m2

t−m2
+

t−m2

u−m2
+ 1 =

E + |p| cos θ

E − |p| cos θ
+

E − |p| cos θ

E + |p| cos θ
+ 1

=
3E2 + p2 cos2 θ

E2 − p2 cos2 θ

=
3m2 + p2(3 + cos2 θ)

m2 + p2 sin2 θ
,

1

t−m2
+

1

u−m2
=

−1

2E

(

1

E − |p| cos θ
+

1

E + |p| cos θ

)

=
−1

2E
×

2E

E2 − p2 cos2 θ
=

−1

m2 + p2 sin2 θ
,

1 +
2m2

t−m2
+

2m2

u−m2
=

p2 sin2 θ −m2

p2 sin2 θ +m2
.

(29)

Thus

|M|2 = 2e4

[

3m2 + p2(3 + cos2 θ)

m2 + p2 sin2 θ
−

(

p2 sin2 θ −m2

p2 sin2 θ +m2

)2
]

, (30)

and finally the partial cross section of annihilation

dσ(e+e− → γγ)

dΩc.m.
=

|k|

|p|

|M|2

64π2s
=

α2

8E|p|
×

[

3m2 + p2(3 + cos2 θ)

m2 + p2 sin2 θ
−

(

p2 sin2 θ −m2

p2 sin2 θ +m2

)2
]

.

(31)

For the non-relativistic electron and positron with |p| ≪ m, the expression in the square

brackets becomes 3− (−1)2 = 2, hence isotropic partial cross section

dσ(slow e+e− → γγ)

dΩc.m.
=

α2

4m|p|
. (32)

And the total cross section in this limit is

σtot(slow e+e− → γγ) =
4π

2
×

α2

4m|p|
=

πα2

2m|p|
, (33)

where total solid angle is 4π/2 because of 2 identical photons in the final state.
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In the opposite limit of ultra-relativistic e− and e+ with |p| ≈ E ≫ m, we have

[

· · ·
]

≈
3 + cos2 θ

sin2 θ
− 1 =

2(1 + cos2 θ)

sin2 θ
(34)

and hence highly un-isotropic cross section

dσ(fast e+e− → γγ)

dΩc.m.
≈

α2

4E2
×

1 + cos2 θ

sin2 θ
. (35)

Note how this cross-section is strongly peaked in the forward direction θ = 0 where one

photon continues the electron’s motion while the other continues the positron’s motion.

According to eq. (35), the total annihilation cross-section

σtot(fast e
+e− → γγ) = 2π

π/2
∫

0

dθ sin θ
dσ

dΩcm
(36)

diverges at small angles, but that’s an artefact of the approximation (34) becoming inaccurate

at small angles where p2 sin2 θ <∼ m2. Instead, for small angles we have

[

· · ·
]

=
4p2

m2 + p2θ2
+ O(1) (37)

and consequently

dσ(fast e+e− → γγ)

dΩc.m.
≈

α2

4E2
×

2p2

m2 + p2θ2
. (38)

This cross-section is strongly peaked in the forward direction, but it does not diverge. In-

stead,

σtot(fast e
+e− → γγ) =

πα2

E2
×

(

log
2E

m
−

1

2

)

. (39)
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Compton Scattering

Compton scattering of an electron and a photon e−γ → e−γ is related by crossing

symmetry to the e−e+ → γγ annihilation. Indeed, at the tree level there are two diagrams

q

e−

e−′

γ

γ′

+ q̃

e−

e−′

γ

γ′

(40)

which are obviously related by s ↔ t crossing to the annihilation diagrams (1). Hence,

given eq. (27) for the annihilation, we may immediately write down a similar formula for the

Compton scattering without doing any work. All we need is to exchange s ↔ t in eq. (27)

and change the overall sign because we cross one fermion, thus

|MCompton|2 = 2e4

[

−
u−m2

s−m2
−

s−m2

u−m2
− 1 +

(

1 +
2m2

s−m2
+

2m2

u−m2

)2
]

. (41)

This is it; all we need to do now is kinematics.

Compton scattering is usually studied in the lab frame where the initial electron is at

rest, pµ = (m, 0). In this frame, the initial and the final photon energies ω and ω′ are related

to photon’s scattering angle θ via Compton’s formula

1

ω′
=

1

ω
+

1− cos θ

me
, (42)

originally written by Arthur Compton in terms of the photon’s wavelengths as

λ′ − λ =
h

mec
× (1− cos θ). (43)

According to this formula, there is an upper limit on the energy of the final photon for

any fixed θ 6= 0: regardless of the initial energy ω, the final energy ω′ can never exceed

me/(1− cos θ).
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The Compton’s formula follows from the energy–momentum conservation

ω′ + E′ = ω + m and k′ + p′2 = k + 0, (44)

which imply

p′2 = (k− k′)2 = k2 + k′2 − 2k · k′ = ω2 + ω′2 − 2ωω′ cos θ (45)

while

p′2 + m2 = E′2 = (ω +m− ω′)2 = ω2 + ω′2 − 2ωω′ + 2ωm − 2ω′m + m2. (46)

Subtracting these two formulae and canceling similar terms gives us

2ωm = 2ω′m + 2ωω′ × (1− cos θ) (47)

and hence eq. (42).

The Mandelstam variables s and u in the lab frame are

s ≡ (k + p)2 = (ω +m)2 − (k+ 0)2 = 2ωm + m2,

u ≡ (k′ − p)2 = (ω′ −m)2 − (k′ − 0)2 = −2ω′m + m2,
(48)

and hence

s − m2 = +2mω, u − m2 = −2mω′. (49)

Plugging these values into eq. (41), we have

−
u−m2

s−m2
−

s−m2

u−m2
− 1 = +

ω′

ω
+

ω

ω′
− 1,

1 +
2m2

s−m2
+

2m2

u−m2
= 1 +

m

ω
−

m

ω′

= − cos θ

(50)

where the last equality follows from eq. (42), and therefore

|MCompton|2 = 2e4 ×

(

ω′

ω
+

ω

ω′
− 1 + cos2 θ

)

. (51)

Finally, we need the phase space factor for the lab frame. For a generic 2 → 2 scattering
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process,

dσ = |M|2 × dP, where

dP =
1

2E1 × 2E2 ×∆v
×

d3p′
1

(2π)3 2E′
1

×
d3p′

3

(2π)2 2E′
2

× (2π)4δ(4)(p′1 + p′2 − p1 − p2)

=
1

64π2E1E2E′
1E

′
2∆v

× d3p′
1 δ(E′

1 + E′
2 −E1 − E2)

∣

∣

p′

2=p1+p2−p′

1

=
dΩ′

1

64π2
×

p′2
1

E1E2E
′
1E

′
2∆v

×

(

d(E′
1 + E′

2)

d|p′
1|

∣

∣

∣

∣

p′

2=p1+p2−p′

1

)−1

.

(52)

Specializing to the Compton scattering and the lab frame for initial electron, we immediately

obtain

dP =
dΩγ

64π2
×

ω′2

ωmω′E′
×

(

1 +
dE′

dω′

∣

∣

∣

∣

p′=k−k′

)−1

. (53)

The only non-trivial issue here is the derivative in the parentheses. This derivative

should be taken for a fixed photon angle θ and before applying the energy conservation rule

E′
e = ω +m− ω′. Instead, we use the momentum conservation and hence

E′2 = ω2 + ω′2 − 2ωω′ × cos θ + m2 (54)

(cf. eq. (45)). For fixed ω and θ,

2E′ × dE′ = 2|p′| × d|p′| = 2(ω′ − ω cos θ)× dω′, (55)

and hence

dE′

dω′
=

ω′ − ω cos θ

E′
. (56)

Once we have taken this derivative, me may now use energy conservation, thus

1 +
dE′

dω′
=

E′ + ω′ − ω cos θ

E′
=

m+ ω − ω cos θ

E′
=

ωm

ω′E′
, (57)

where the last equality follows from eq. (42). Plugging the derivative (57) into eq. (53), we
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arrive at

dP =
dΩγ

64π2
×

ω′2

m2ω2
(58)

and hence the Klein–Nishina formula

dσCompton

dΩlab
=

α2

2m2
e
×

ω′2

ω2
×

(

ω′

ω
+

ω

ω′
− sin2 θ

)

(59)

where ω′ is given by eq. (42).

For low photon energies ω ≪ me, the Compton’s formula gives ω′ ≈ ω, and the Klein–

Nishina cross-section (59) becomes the good old Thompson cross-section

dσCompton

dΩlab
→

dσThompson

dΩlab
=

α2

2m2
e
× (2− sin2 θ = 1 + cos2 θ), (60)

and the total cross-section is

σThompson
total =

8π

3

α2

m2
e

≈ 0.663 barn. (61)

On the other hand, for very high photon energies ω ≫ me and θ 6≈ 0, we have

ω′ ≪ ω =⇒
ω′

ω
+

ω

ω′
− sin2 θ ≈

ω

ω′
, (62)

and the Klein–Nishina formula becomes

dσCompton

dΩlab
≈

α2

2m2
e
×

ω′

ω
≈

α2

2me × ω
×

1

1− cos θ
.

For small angles θ <∼
√

2me/ω this approximation breaks down because we no longer have

ω′ ≪ ω. Thus, instead of diverging at θ → 0, the partial cross-section becomes large but

finite, and the total Compton cross-section is

σCompton
total ≈

πα2

me × ω
×

(

log
2ω

me
+

1

2

)

. (63)
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