Annihilation v. Compton Scattering

Annihilation $e^{+} e^{-} \rightarrow \gamma \gamma$: 2 tree diagrams related by Bose symmetry:

Compton scattering $\gamma e^{-} \rightarrow \gamma e^{-}: 2$ similar tree diagrams

s channel

u channel

The annihilation and the Compton scattering are related by crossing $s \leftrightarrow t$, i.e.

$$
\begin{equation*}
t^{a} \leftrightarrow s^{c}, \quad s^{a} \leftrightarrow t^{c}, \quad u^{a} \leftrightarrow u^{c} . \tag{3}
\end{equation*}
$$

Hence, the amplitudes of these two processes are analytic continuations of each other as functions of momenta,

$$
\begin{equation*}
\mathcal{M}^{\text {annihilation }}=f(s, t, u), \quad \mathcal{M}^{\text {Compton }}=f(t, s, u) \tag{4}
\end{equation*}
$$

for the same analytic function f.

After summing / averaging over fermion spins and photon's polarization, we have

$$
\begin{align*}
\sum_{\lambda_{1}, \lambda_{2}} \frac{1}{4} \sum_{s_{-}, s_{+}}\left|\mathcal{M}^{\text {annihilation }}\right|^{2} & =F(s, t, u) \\
\frac{1}{2} \sum_{s, s^{\prime}} \frac{1}{2} \sum_{\lambda \lambda^{\prime}}\left|\mathcal{M}^{\text {Compton }}\right|^{2} & =-F(t, s, u) \tag{5}
\end{align*}
$$

for the same function F. The opposite signs of F in the two formulae follow from crossing an odd number of fermions. These signs are necessary to keep all the spin-summed $|\mathcal{M}|^{2}$ positive.

To see where such signs come from, consider some generic process $X \rightarrow Y$ and let

$$
\begin{equation*}
f(s, t, u)=\langle Y| \mathcal{M}|X\rangle, \quad \bar{f}(s, t, u)=\langle X| \mathcal{M}|Y\rangle \tag{6}
\end{equation*}
$$

For real momenta \bar{f} is the complex conjugate of f, but once we analytically continue to complex momenta, this is no longer true. When we continue to the crossed momenta which are real but have negative p^{0} for the crossed particles - the analytic continuations of the the f and the \bar{f} functions go back to being complex conjugates of each other up to a sign,

$$
\begin{equation*}
\bar{f}=f^{*} \times(-1)^{\# \mathrm{FC}} \tag{7}
\end{equation*}
$$

where \#FC is the number of fermions we have crossed (i.e., made incoming rather than outgoing or vice verse.)

