Dimensional Analysis and Allowed QFT Couplings

In $\hbar = c = 1$ units, all quantities are measured in units of energy to some power. For example $[m] = [p^{\mu}] = E^{+1}$ while $[x^{\mu}] = E^{-1}$ where [m] stands for the dimensionality of the mass rather than the mass itself, and ditto for the $[p^{\mu}]$, $[x^{\mu}]$, etc. The action

$$S = \int d^4x \, \mathcal{L}$$

is dimensionless (in $\hbar \neq 1$ units, $[S] = \hbar$), so the Lagrangian of a 4D field theory has dimensionality $[\mathcal{L}] = E^{+4}$.

Canonical dimensions of quantum fields follow from the free-field Lagrangians. A scalar field $\Phi(x)$ has

$$\mathcal{L}_{\text{free}} = \frac{1}{2} \partial_{\mu} \Phi \, \partial^{\mu} \Phi - \frac{1}{2} m^2 \Phi^2, \qquad (1)$$

so $[\mathcal{L}] = E^{+4}$, $[m^2] = E^{+2}$, and $[\partial_{\mu}] = E^{+1}$ imply $[\Phi] = E^{+1}$. Likewise, the EM field has

$$\mathcal{L}_{\text{free}}^{\text{EM}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \implies [F_{\mu\nu}] = E^{+2}, \qquad (2)$$

and since $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, the $A_{\nu}(x)$ field has dimension

$$[A_{\nu}] = [F_{\mu\nu}] / [\partial_{\mu}] = E^{+1}.$$
(3)

The massive vector fields also have $[A_{\nu}] = E^{+1}$ so that both terms in

$$\mathcal{L}_{\text{free}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 A_{\nu} A^{\nu}$$
(4)

have dimensions $[F^2] = [m^2 A^2] = E^{+4}$.

In fact, all *bosonic* fields in 4D spacetime have canonical dimensions E^{+1} because their kinetic terms are quadratic in ∂_{μ} (field). On the other hand, fermionic fields line the Dirac field $\Psi(x)$ with free Lagrangian

$$\mathcal{L}_{\text{free}} = \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi \tag{5}$$

have kinetic terms with two fields but only one ∂_{μ} . Consequently, $[\mathcal{L}] = E^{+4}$ implies $[\overline{\Psi}\Psi] = E^{+3}$ and hence $[\Psi] = [\overline{\Psi}] = E^{+3/2}$. Similarly, all other types of fermionic fields in 4D have canonical dimension $E^{+3/2}$.

In QFTs in other spacetime dimensions $d \neq 4$, the bosonic fields such as scalars and vectors have canonical dimension

$$[\Phi] = [A_{\nu}] = E^{+(d-2)/2}$$
(6)

while the fermionic fields have canonical dimension

$$[\Psi] = E^{+(d-1)/2}.$$
 (7)

In perturbation theory, dimensionality of coupling parameters such as λ in $\lambda \Phi^4$ theory or e in QED follows from the field's canonical dimensions. For example, in a 4D scalar theory with Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \,\partial^{\mu} \Phi - \frac{1}{2} m^2 \Phi^2 - \sum_{n \ge 3} \frac{C_n}{n!} \,\Phi^n, \tag{8}$$

the coupling C_n of the Φ^n term has dimensionality

$$[C_n] = [\mathcal{L}] / [\Phi]^n = E^{4-n}.$$
(9)

In particular, the cubic coupling C_3 has positive energy dimension E^{+1} , the quartic coupling $\lambda = C_4$ is dimensionless, while all the higher-power couplings have negative energy dimensions E^{negative} .

Now consider a theory with a single coupling g of dimensionality $[g] = E^{\Delta}$. The perturbation theory in g amounts to a power series expansion

$$\mathcal{M}(\text{momenta}, g) = \sum_{N} \left(\frac{g}{\mathcal{E}^{\Delta}}\right)^{N} \times F_{N}(\text{momenta})$$
 (10)

where \mathcal{E} is the overall energy scale of the process in question and all the F_N functions of momenta have the same dimensionality. The power series (10) is asymptotic rather than convergent, so it makes sense only when the expansion parameter is small,

$$\frac{g}{\mathcal{E}^{\Delta}} \ll 1.$$
 (11)

For a dimensionless coupling g, this condition is simply $g \ll 1$, but for $\Delta \neq 0$, the situation is more complicated.

For couplings of positive dimensionality $\Delta > 0$, the expansion parameter (11) is always small for for high-energy processes with $\mathcal{E} \gg g^{1/\Delta}$. But for low energies $\mathcal{E} \lesssim g^{1/\Delta}$ the expansion parameter becomes large and the perturbation theory breaks down. This is a major problem for theories with $\Delta > 0$ and massless particles. However, if all the particles are massive, then all processes have energies $\mathcal{E} \gtrsim M_{\text{lightest}}$, and this makes couplings with $\Delta > 0$ OK as long as

$$g \ll M_{\text{lightest}}^{\Delta}$$
 (12)

Couplings of negative dimensionality $\Delta < 0$ have an opposite problem: The expansion parameter (11) is small at low energies but becomes large at high energies $\mathcal{E} \gtrsim g^{-1/\Delta}$. Beyond the maximal energy

$$E^{\max} \sim g^{-1/\Delta},$$
 (13)

the perturbation theory breaks down and we may no longer compute the S–matrix elements \mathcal{M} using any finite number of Feynman diagrams.

Worse, in Feynman diagrams with loops one must worry not only about energies of the incoming and outgoing particles but also about momenta q^{μ} of the internal lines. Basically, an *L*-loop diagram contributing to N^{th} term in the expansion (10) produces something like

$$g^N \times \int d^{4L}q \mathcal{F}_N(q, p, k, m)$$
 where $[\mathcal{F}_N] = E^{-N\Delta - 4L + C}$, $C = \text{const.}$ (14)

For very large loop momenta $q \gg p, k, m$, dimensionality implies $\mathcal{F}_N \propto q^{-N\Delta - 4L + C}$, so for $-N\Delta + C \ge 0$, the integral (14) diverges as $q \to \infty$. Moreover, for $\Delta < 0$ higher orders of perturbation theory have worse divergences of increasing degrees $-N\Delta + C \ge 0$. Therefore, field theories with $\Delta < 0$ couplings do not work as complete theories.

However, theories with $\Delta < 0$ may be used as approximate *effective theories* (without the divergent loop graphs) for low-energy processes, $\mathcal{E} \leq \Lambda$ for some $\Lambda < g^{-1/\Delta}$. For example, Fermi theory of weak interactions

$$\mathcal{L}_{\text{int}} = 2\sqrt{2}G_f \times J^+_{\mu}J^{\mu-} \qquad \text{where} \quad J^{\pm}_{\mu} = \sum_{\substack{\text{appropriate}\\\text{fermions}}} \overline{\Psi} \frac{1-\gamma^5}{2} \gamma_{\mu} \Psi \tag{15}$$

has coupling G_F of dimension $[G_G] = E^{-2}$; its value is $G_F \approx 1.17 \cdot 10^{-5} \,\text{GeV}^{-2}$. This is a good effective theory for low-energy weak interactions, but it cannot be used for energies $\mathcal{E} \gtrsim 1/\sqrt{G_F} \sim 300$ GeV, not even theoretically. In real life, Fermi theory works well for $\mathcal{E} \ll M_W \sim 80$ GeV, but for higher energies one should use the complete $SU(2) \times U(1)$ electroweak theory including W^{\pm} and Z^0 particles, *etc.*

Similar to the Fermi theory, most effective theories with $\Delta < 0$ couplings are low-energy limits of more complicated theories with extra heavy particles of masses $M \lesssim g^{-1/\Delta}$ but no $\Delta < 0$ couplings.

In QFTs which are valid for all energies, all coupling must have zero or positive energy dimensions. In 4D, a coupling involving b bosonic fields (scalar or vector), f fermionic fields, and δ derivatives ∂_{μ} has dimensionality

$$\Delta = 4 - b - \frac{3}{2}f - \delta.$$
 (16)

Thus, only the boson³ couplings have $\Delta > 0$ while the $\Delta = 0$ couplings comprise boson⁴, boson × fermion², and boson² × ∂ boson. All other coupling types have $\Delta > 0$ and are not allowed (except in effective theories).

Here is the complete list of the allowed couplings in 4D.

1. Scalar couplings

$$-\frac{\mu}{3!}\Phi^3$$
 and $-\frac{\lambda}{4!}\Phi^4$. (17)

Note: the higher powers Φ^5 , Φ^6 , *etc.*, are not allowed because the couplings would have $\Delta < 0$.

2. Gauge couplings of vectors to charged scalars

$$-iqA^{\mu}\left(\Phi^{*}\partial_{\mu}\Phi - \Phi\partial_{\mu}\Phi^{*}\right) + q^{2}\Phi^{*}\Phi A_{\mu}A^{\mu} \subset D_{\mu}\Phi^{*}D^{\mu}\Phi.$$
(18)

3. Non-abelian gauge couplings between the vector fields

$$-gf^{abc}(\partial_{\mu}A^{a}_{\nu})A^{\mu b}A^{\nu c} - \frac{g^{2}}{4}f^{abc}f^{ade}A^{b}_{\mu}A^{c}_{\nu}A^{\mu d}A^{\nu e} \subset -\frac{1}{4}F^{a}_{\mu\nu}F^{\mu\nu a}.$$
 (19)

4. Gauge couplings of vectors to charged fermions,

$$-qA^{\mu} \times \overline{\Psi}\gamma_{\mu}\Psi \subset \overline{\Psi}(i\gamma_{\mu}D^{\mu})\Psi.$$
⁽²⁰⁾

If the fermions are massless and chiral, we may also have

$$-qA_{\mu} \times \overline{\Psi} \frac{1 \pm \gamma^5}{2} \gamma_{\mu} \Psi, \qquad (21)$$

or in Weyl fermion language

$$-qA_{\mu} \times \chi^{\dagger} \bar{\sigma}_{\mu} \chi.$$

5. Yukawa couplings of scalars to fermions,

$$-g\Phi \times \overline{\Psi}\Psi \quad \text{or} \quad -ig\Phi \times \overline{\Psi}\gamma^5\Psi.$$
 (22)

If parity is conserved, in the first term Φ should be a true scalar, and in the second term a pseudo-scalar.