Dimensional Analysis and Allowed QFT Couplings

In 7 = ¢ = 1 units, all quantities are measured in units of energy to some power. For
example [m} = [p“} = Et1 while [m“} = E~! where [m] stands for the dimensionality of
the mass rather than the mass itself, and ditto for the [p’ﬂ, [:L‘“], etc. The action

S :/d4x£

is dimensionless (in A # 1 units, [S] = k), so the Lagrangian of a 4D field theory has

dimensionality [£] = E+4.

Canonical dimensions of quantum fields follow from the free-field Lagrangians. A scalar

field ®(x) has
Lice = 20,00"® — im?@?, (1)
so [£] = E™, [m?] = ET2, and [0,] = ET! imply [®] = ET!. Likewise, the EM field has
L = —1FuwF" = [Fu] = B, (2)

free

and since F,, = 0,A, — 0,A,, the A, (z) field has dimension
[A)] = [Fw] /0] = ET. (3)
The massive vector fields also have [A,,} = E*! so that both terms in
Liee = —1FuF" + 3m*A,A” (4)

have dimensions [F?] = [m?A?%] = BT
In fact, all bosonic fields in 4D spacetime have canonical dimensions E+! because their

kinetic terms are quadratic in d,(field). On the other hand, fermionic fields line the Dirac

field U(x) with free Lagrangian
Liee = @(Muau - m)\Ij (5)

have kinetic terms with two fields but only one 0,. Consequently, [E] = E** implies
W\IJ} = E*3 and hence [\Il] = [m — E13/2, Similarly, all other types of fermionic fields in

4D have canonical dimension E13/2,



In QFTs in other spacetime dimensions d # 4, the bosonic fields such as scalars and

vectors have canonical dimension
@] = [4)] = B2 (6)
while the fermionic fields have canonical dimension

[‘If} — E+(d_1)/2, (7)

In perturbation theory, dimensionality of coupling parameters such as A in A®* theory or
e in QED follows from the field’s canonical dimensions. For example, in a 4D scalar theory
with Lagrangian

C
L= 30,20"0 — Jm*®* — y —L o, (8)
n>3

the coupling C), of the " term has dimensionality

) = (2] /[ [o) = B )

In particular, the cubic coupling C3 has positive energy dimension ET!, the quartic cou-
pling A\ = C} is dimensionless, while all the higher-power couplings have negative energy

dimensions Frmegative

Now consider a theory with a single coupling ¢g of dimensionality [g} = E2. The per-

turbation theory in g amounts to a power series expansion

g N

M (momenta, g) = Z <5_A> X F(momenta) (10)
N

where £ is the overall energy scale of the process in question and all the F functions of

momenta have the same dimensionality. The power series (10) is asymptotic rather than

convergent, so it makes sense only when the expansion parameter is small,

g% < 1 (11)

For a dimensionless coupling g, this condition is simply g < 1, but for A # 0, the situation

is more complicated.



For couplings of positive dimensionality A > 0, the expansion parameter (11) is always
small for for high-energy processes with €& > ¢*/2. But for low energies £ < ¢*/2 the
expansion parameter becomes large and the perturbation theory breaks down. This is a
major problem for theories with A > 0 and massless particles. However, if all the particles
are massive, then all processes have energies & & Miightest, and this makes couplings with

A > 0 OK as long as

A
g < Mlightest‘ (12)

Couplings of negative dimensionality A < 0 have an opposite problem: The expansion
parameter (11) is small at low energies but becomes large at high energies £ = g VA,

Beyond the maximal energy

pmax g—l/A (13)

Y

the perturbation theory breaks down and we may no longer compute the S-—matrix elements

M using any finite number of Feynman diagrams.

Worse, in Feynman diagrams with loops one must worry not only about energies of the
incoming and outgoing particles but also about momenta ¢* of the internal lines. Basically,

an L-loop diagram contributing to N*" term in the expansion (10) produces something like
gV x /d4quN(q,p, k,m) where [Fn] = E-NATALAC 0 — const. (14)

~NA-L+C g for

For very large loop momenta g > p, k, m, dimensionality implies Fy o ¢
—NA + C > 0, the integral (14) diverges as ¢ — oo. Moreover, for A < 0 higher orders of
perturbation theory have worse divergences of increasing degrees —NA + C' > 0. Therefore,

field theories with A < 0 couplings do not work as complete theories.

However, theories with A < 0 may be used as approximate effective theories (without the
divergent loop graphs) for low-energy processes, £ < A for some A < g /A For example,
Fermi theory of weak interactions
1—7°

2

Lint = 2\/§Gf><J;LLJ“_ where Jj[ = Z U

appropriate
fermions

TuV (15)

has coupling G of dimension [Gg] = E72; its value is Gp ~ 1.17 - 107° GeV 2. This is

a good effective theory for low-energy weak interactions, but it cannot be used for energies



& 2 1/\/Gr ~ 300 GeV, not even theoretically. In real life, Fermi theory works well for
& < My ~ 80 GeV, but for higher energies one should use the complete SU(2) x U(1)

electroweak theory including W+ and Z° particles, etc.

Similar to the Fermi theory, most effective theories with A < 0 couplings are low-energy
limits of more complicated theories with extra heavy particles of masses M < ¢~ /2 but no

A < 0 couplings.

In QFTs which are valid for all energies, all coupling must have zero or positive energy
dimensions. In 4D, a coupling involving b bosonic fields (scalar or vector), f fermionic fields,

and 0 derivatives d,, has dimensionality

A=4—-0b—3f—3 (16)

Thus, only the boson® couplings have A > 0 while the A = 0 couplings comprise boson?,

boson x fermion?, and boson? x dboson. All other coupling types have A > 0 and are not
allowed (except in effective theories).
Here is the complete list of the allowed couplings in 4D.
1. Scalar couplings
1

A
3 4
T ®° and — 1 ", (17)

Note: the higher powers ®°, ®0 etc., are not allowed because the couplings would

have A < 0.

2. Gauge couplings of vectors to charged scalars
—igA" (2%9,® — ©9,0%) + ¢*®*PA,A* C D,P* D'O. (18)
3. Non-abelian gauge couplings between the vector fields
(9, A% AP AV — gZQfabCfadeAZAlch,udAue c _i Fo P (19)

4. Gauge couplings of vectors to charged fermions,

—qA* x U, U C U(iy,D*)V. (20)



If the fermions are massless and chiral, we may also have

—qA, X @1 =7 YV, (21)
or in Weyl fermion language
—qA, X XTﬁuX-
. Yukawa couplings of scalars to fermions,
—gd x U¥ or —igd x Uy U, (22)

If parity is conserved, in the first term ® should be a true scalar, and in the second

term a pseudo-scalar.



