
Dimensional Analysis and Allowed QFT Couplings

In h̄ = c = 1 units, all quantities are measured in units of energy to some power. For

example
[
m
]

=
[
pµ
]

= E+1 while
[
xµ
]

= E−1 where [m] stands for the dimensionality of

the mass rather than the mass itself, and ditto for the
[
pµ
]
,
[
xµ
]
, etc. The action

S =

∫
d4xL

is dimensionless (in h̄ 6= 1 units,
[
S
]

= h̄), so the Lagrangian of a 4D field theory has

dimensionality [L] = E+4.

Canonical dimensions of quantum fields follow from the free-field Lagrangians. A scalar

field Φ(x) has

Lfree = 1
2∂µΦ ∂µΦ − 1

2m
2Φ2, (1)

so
[
L
]

= E+4,
[
m2
]

= E+2, and
[
∂µ
]

= E+1 imply
[
Φ
]

= E+1. Likewise, the EM field has

LEM
free = −1

4FµνF
µν =⇒

[
Fµν
]

= E+2, (2)

and since Fµν = ∂µAν − ∂νAµ, the Aν(x) field has dimension

[
Aν
]

=
[
Fµν
] / [

∂µ
]

= E+1. (3)

The massive vector fields also have
[
Aν
]

= E+1 so that both terms in

Lfree = −1
4FµνF

µν + 1
2m

2AνA
ν (4)

have dimensions
[
F 2
]

=
[
m2A2

]
= E+4.

In fact, all bosonic fields in 4D spacetime have canonical dimensions E+1 because their

kinetic terms are quadratic in ∂µ(field). On the other hand, fermionic fields line the Dirac

field Ψ(x) with free Lagrangian

Lfree = Ψ(iγµ∂µ −m)Ψ (5)

have kinetic terms with two fields but only one ∂µ. Consequently,
[
L
]

= E+4 implies[
ΨΨ
]

= E+3 and hence
[
Ψ
]

=
[
Ψ
]

= E+3/2. Similarly, all other types of fermionic fields in

4D have canonical dimension E+3/2.
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In QFTs in other spacetime dimensions d 6= 4, the bosonic fields such as scalars and

vectors have canonical dimension

[
Φ
]

=
[
Aν
]

= E+(d−2)/2 (6)

while the fermionic fields have canonical dimension

[
Ψ
]

= E+(d−1)/2. (7)

In perturbation theory, dimensionality of coupling parameters such as λ in λΦ4 theory or

e in QED follows from the field’s canonical dimensions. For example, in a 4D scalar theory

with Lagrangian

L = 1
2∂µΦ ∂µΦ − 1

2m
2Φ2 −

∑
n≥3

Cn
n!

Φn, (8)

the coupling Cn of the Φn term has dimensionality

[
Cn
]

=
[
L
] / [

Φ
]n

= E4−n. (9)

In particular, the cubic coupling C3 has positive energy dimension E+1, the quartic cou-

pling λ = C4 is dimensionless, while all the higher-power couplings have negative energy

dimensions Enegative.

Now consider a theory with a single coupling g of dimensionality
[
g
]

= E∆. The per-

turbation theory in g amounts to a power series expansion

M(momenta, g) =
∑
N

( g

E∆

)N
× FN (momenta) (10)

where E is the overall energy scale of the process in question and all the FN functions of

momenta have the same dimensionality. The power series (10) is asymptotic rather than

convergent, so it makes sense only when the expansion parameter is small,

g

E∆
� 1. (11)

For a dimensionless coupling g, this condition is simply g � 1, but for ∆ 6= 0, the situation

is more complicated.
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For couplings of positive dimensionality ∆ > 0, the expansion parameter (11) is always

small for for high-energy processes with E � g1/∆. But for low energies E <∼ g1/∆ the

expansion parameter becomes large and the perturbation theory breaks down. This is a

major problem for theories with ∆ > 0 and massless particles. However, if all the particles

are massive, then all processes have energies E >∼ Mlightest, and this makes couplings with

∆ > 0 OK as long as

g � M∆
lightest . (12)

Couplings of negative dimensionality ∆ < 0 have an opposite problem: The expansion

parameter (11) is small at low energies but becomes large at high energies E >∼ g−1/∆.

Beyond the maximal energy

Emax ∼ g−1/∆, (13)

the perturbation theory breaks down and we may no longer compute the S–matrix elements

M using any finite number of Feynman diagrams.

Worse, in Feynman diagrams with loops one must worry not only about energies of the

incoming and outgoing particles but also about momenta qµ of the internal lines. Basically,

an L–loop diagram contributing to N th term in the expansion (10) produces something like

gN ×
∫
d4LqFN (q, p, k,m) where

[
FN
]

= E−N∆−4L+C, C = const. (14)

For very large loop momenta q � p, k,m, dimensionality implies FN ∝ q−N∆−4L+C, so for

−N∆ + C ≥ 0, the integral (14) diverges as q → ∞. Moreover, for ∆ < 0 higher orders of

perturbation theory have worse divergences of increasing degrees −N∆ +C ≥ 0. Therefore,

field theories with ∆ < 0 couplings do not work as complete theories.

However, theories with ∆ < 0 may be used as approximate effective theories (without the

divergent loop graphs) for low-energy processes, E <∼ Λ for some Λ < g−1/∆. For example,

Fermi theory of weak interactions

Lint = 2
√

2Gf × J+
µ J

µ− where J±µ =
∑

appropriate
fermions

Ψ
1− γ5

2
γµΨ (15)

has coupling GF of dimension
[
GG
]

= E−2; its value is GF ≈ 1.17 · 10−5 GeV−2. This is

a good effective theory for low-energy weak interactions, but it cannot be used for energies
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E >∼ 1/
√
GF ∼ 300 GeV, not even theoretically. In real life, Fermi theory works well for

E � MW ∼ 80 GeV, but for higher energies one should use the complete SU(2) × U(1)

electroweak theory including W± and Z0 particles, etc.

Similar to the Fermi theory, most effective theories with ∆ < 0 couplings are low-energy

limits of more complicated theories with extra heavy particles of masses M <∼ g−1/∆ but no

∆ < 0 couplings.

In QFTs which are valid for all energies, all coupling must have zero or positive energy

dimensions. In 4D, a coupling involving b bosonic fields (scalar or vector), f fermionic fields,

and δ derivatives ∂µ has dimensionality

∆ = 4 − b − 3
2 f − δ. (16)

Thus, only the boson3 couplings have ∆ > 0 while the ∆ = 0 couplings comprise boson4,

boson × fermion2, and boson2 × ∂boson. All other coupling types have ∆ > 0 and are not

allowed (except in effective theories).

Here is the complete list of the allowed couplings in 4D.

1. Scalar couplings

− µ
3!

Φ3 and − λ

4!
Φ4. (17)

Note: the higher powers Φ5, Φ6, etc., are not allowed because the couplings would

have ∆ < 0.

2. Gauge couplings of vectors to charged scalars

−iqAµ (Φ∗∂µΦ − Φ∂µΦ∗) + q2Φ∗ΦAµA
µ ⊂ DµΦ∗DµΦ. (18)

3. Non-abelian gauge couplings between the vector fields

−gfabc(∂µAaν)AµbAνc − g2

4
fabcfadeAbµA

c
νA

µdAνe ⊂ −1

4
F aµνF

µνa. (19)

4. Gauge couplings of vectors to charged fermions,

−qAµ ×ΨγµΨ ⊂ Ψ(iγµD
µ)Ψ. (20)
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If the fermions are massless and chiral, we may also have

−qAµ ×Ψ
1± γ5

2
γµΨ, (21)

or in Weyl fermion language

−qAµ × χ†σ̄µχ.

5. Yukawa couplings of scalars to fermions,

−gΦ×ΨΨ or − igΦ×Ψγ5Ψ. (22)

If parity is conserved, in the first term Φ should be a true scalar, and in the second

term a pseudo-scalar.
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