
Interaction Picture and Dyson Series

Many quantum systems have Hamiltonians of the form Ĥ = Ĥ0 + V̂ where Ĥ0 is a free

Hamiltonian with known spectrum — which is used to classify the states of the full theory

— while V̂ is a perturbation which causes transitions between the eigenstates of the Ĥ0. For

example, in scattering theory

Ĥ0 =
P̂2

red

2Mred
, V̂ = potential V (x̂rel). (1)

Similarly, for a self-interacting quantum scalar field we have

Ĥ0 =

∫

d3x

(

1
2Π̂

2(x) + 1
2

(

∇Φ̂(x)
)2

+
m2

2
Φ̂2

)

=

∫

d3p

16π3Ep

Epâ
†
p
â
p

+ const,

V̂ =

∫

d3x
λ

24
Φ̂4(x).

(2)

To study the transitions (scattering, making new particles, decays, etc.) caused by V̂ we

want to use a fixed basis of Ĥ0 eigenstates, but we want to keep the transitions separate

from wave-packet spreading and other effects due to Schrödinger phases e−iEt of the Ĥ0

itself. The picture of QM which separates these effects is the interaction picture.

In the Schrödinger picture, the operators are time-independent while the quantum states

evolve with time as |ψ〉S(t) = e−iĤt |ψ〉(0). In the Heisenberg picture it’s the other way

around — the quantum states are time independent while the operators evolve with time —

and the two pictures are related by a time-dependent unitary operator eiĤt,

|Ψ〉H(t) = e+iĤt |Ψ〉S(t) ≡ |Ψ〉S(0) ∀t, ÂH = e+iĤtÂSe
−iĤt. (3)

The interaction picture has a similar relation to the Schrödinger’s, but using the eiĤ0t instead

of the eiĤt,

ÂI = e+iĤ0tÂSe
−Ĥ0t,

|ψ〉I(t) = e+iĤ0t |ψ〉S(t) = e+iĤ0te−iĤt |ψ〉H 6= const.
(4)

In the interaction picture, quantum fields depend on time as if they were free fields, for
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example

Φ̂I(x, t) =

∫

d3p

16π3Ep

(

e−ipxâp + e+ipxâ†p

)p0=+Ep

, (5)

regardless of the interactions. This is different form the Heisenberg picture where non-free

fields depend on time in a much more complicated way.

In the interaction picture, time-dependence of the quantum states is governed by the

perturbation V̂ according to Schrödinger-like equation

i
d

dt
|ψ〉I(t) = V̂I(t) |Ψ〉I(t). (6)

The problem with this equation is that the V̂I operator here is itself in the interaction picture,

so it depends on time as V̂I(t) = e+iĤ0tV̂Se
−Ĥ0t. Consequently, the evolution operator for

the interaction picture

ÛI(t, t0) : |ψ〉I(t) = ÛI(t, t0) |ψ〉I(t0) (7)

is much more complicated than simply e−iV̂ (t−t0).

The evolution operator satisfies

i
∂

∂t
ÛI(t, t0) = V̂I(t) ÛI(t, t0), ÛI(t = t0) = 1, (8)

and the formal solution to this equation is the Dyson series

ÛI(t, t0) = 1 − i

t
∫

t0

dt1 V̂I(t1) −

t
∫

t0

dt2 V̂I(t2)

t2
∫

t0

dt1 V̂I(t1)

+ i

t
∫

t0

dt3 V̂I(t3)

t3
∫

t0

dt2 V̂I(t2)

t2
∫

t0

dt1 V̂I(t1) + · · ·

= 1 +

∞
∑

n=1

(−i)n
∫

· · ·

∫

t0<t1<···<tn<t

dtn · · · dt1 V̂I(tn) · · · V̂I(t1).

(9)

Note time ordering of operators V̂I(tn) · · · V̂I(t1) in each term.
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To see that the Dyson series satisfies eqs. (8), we note that in each term, the only thing

which depends on t is the upper limit of the leftmost dtn integral. Thus, taking ∂/∂t of the

term amounts to skipping that integral and letting tn = t,

i
∂

∂t



(−i)n
t

∫

t0

dtn V̂I(tn)

tn
∫

t0

dtn−1 V̂I(tn−1) · · ·

t2
∫

t0

dt1 V̂I(t1)



 = (10)

= V̂I(tn = t)×



(−i)n−1

tn=t
∫

t0

dtn−1 V̂I(tn−1) · · ·

t2
∫

t0

dt1 V̂I(t1)



 .

In other words, i∂/∂t of the nth term is V̂I(t)× the (n− 1)st term, and that’s how eq. (8) is

satisfied. And the initial condition ÛI(t = t0) = 1 is also satisfied (this is obvious).

Thanks to the time ordering of the V̂I(t) in each term of the Dyson series — the earliest

operator being rightmost so it acts first, the second earliest being second from the right, etc.,

until the latest operator stands to the left of everything so it acts last — we may rewrite the

integrals in a more compact form using the time-orderer T. Earlier in class, I have defined

T of an operator product, but now I would like to extend this by linearity to any sum of

operators products. Similarly, we may time-order integrals of operator products and hence

products of integrals such as

T





t
∫

t0

dt′ V̂I(t
′)





2

def
= T

t
∫∫

t0

dt1 dt2 V̂I(t1)V̂I(t2)
def
=

t
∫∫

t0

dt1 dt2TV̂I(t1)V̂I(t2)

=

∫∫

t0<t1<t2<t

dt1 dt2 V̂I(t2)V̂I(t1) +

∫∫

t0<t2<t1<t

dt1 dt2 V̂I(t1)V̂I(t2)

(11)

where the domain of each dt1 dt2 integral is color-coded on the diagram below:
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t1

t2

t0

t0

t

t

t1 > t2

t2 > t1

(12)

Integral over the blue triangle t0 < t1 < t2 < t is what appears in the Dyson series. But there

is t1 ↔ t2 symmetry between the blue and red triangles, and the corresponding integrals

on the bottom line of eq. (11) are equal to each other. Hence the triangular integral in the

Dyson series may be written in a more compact form as

∫∫

t0<t1<t2<t

dt1 dt2 V̂I(t2)V̂I(t1) =
1

2
T





t
∫

t0

dt′ V̂1(t
′)





2

. (13)

Similar procedure applies to the higher-order terms in the Dyson series. The nth order

term is an integral over a simplex t0 < t1 < t2 < · · · < tn < t in the (t1, . . . , tn) space.

A hypercube t0 < t1, . . . , tn < t contains n! such simplexes, and after time-ordering the V̂

operators, integrals over all simplexes become equal by permutation symmetry. Thus,

∫

· · ·

∫

t0<t1<···<tn<t

dtn · · · dt1 V̂I(tn) · · · V̂I(t1) =
1

n!

t
∫

· · ·

∫

t0

dtn · · ·dt1TV̂I(tn) · · · V̂I(t1)

=
1

n!
T





t
∫

t0

dt′ V̂1(t
′)





n

. (14)

Altogether, the Dyson series becomes a time-ordered exponential

ÛI(t, t0) = 1 +
∞
∑

n=1

(−i)n

n!
T





t
∫

t0

dt′ V̂I(t
′)





n

≡ T-exp



−i

t
∫

t0

dt′ V̂I(t
′)



 . (15)
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Of particular interest is the evolution operator from distant past to distant future,

Ŝ
def
= ÛI(+∞,−∞) = T-exp



−i

+∞
∫

−∞

dt′ V̂I(t
′)



 . (16)

This operator is properly called ‘the scattering operator’ or ‘the S–operator’, but everybody

calls it ‘the S–matrix’. In the scalar field theory where

V̂I(t) =
λ

24

∫

d3x Φ̂4
I(x, t), (17)

the S–matrix has a Lorentz-invariant form

Ŝ = T-exp









−iλ

24

∫

whole

spacetime

d4x Φ̂4
I(x)









. (18)

Note that Φ̂I(x) here is the free scalar field as in eq. (5). Similar Lorentz-invariant expressions

exist for other quantum field theories. For example, in QED

Ŝ = T-exp









+ie

∫

whole

spacetime

d4x Âµ
I (x)Ψ̂I(x)γµΨ̂I(x)









(19)

where both the EM field Âµ
I (x) and the electron field ΨI(x) are in the interaction picture so

they evolve with time as free fields.

Alas, eqs. (18), (19), and similar formulae for other quantum field theories do not help

us to evaluate the S-matrix’s elements 〈out| Ŝ |in〉 between physical incoming and outgoing

2–particle (or n-particle) states. In the potential scattering theory the asymptotic states are

simply eigenstates of the free Hamiltonian, but this does not work in QFT. Unfortunately,

asymptotic n–particle states |p1, . . . , pn〉 of the interacting field theory are quite different

from the free theory’s n–particle states â†pn
· · · â†p1

|0〉. Even the physical vacuum |Ω〉 is

different from the free theory’s vacuum |0〉.
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But there is another way of calculating the physical S–matrix elements 〈out| Ŝ |in〉; in-

stead of eqs. (18), (19), etc., it uses correlation functions of the fully-interacting quantum

fields.

Correlation Functions

The n-point correlation function of the scalar field theory is defined as

Fn(x1, . . . , xn) = 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉 . (20)

Note that all the fields Φ̂H(x) here are in the Heisenberg picture so their time dependence

involves the complete Hamiltonian Ĥ rather than just the Ĥ0. Likewise, |Ω〉 is the ground

state of Ĥ , i.e. the true physical vacuum of the interacting theory rather than the free

theory’s vacuum |0〉.

Other quantum field theories with fields φ̂α (which could be scalar, vector, tensor, spinor,

whatever) have similar correlation functions

Fα1,...,αn(x1, . . . , xn) = 〈Ω|Tφ̂α1

H (x1) · · · φ̂
αn

H (xn) |Ω〉 . (21)

Again, all the φαi

H (xi) are in the Heisenberg picture, so they are interacting rather than free

fields. But for now, let’s focus on the theory of a single scalar fields and its correlation

functions (20).

In perturbation theory, the correlation functions Fn of the interacting theory are related

to the free correlation functions

〈0|TΦ̂I(x1) · · · Φ̂I(xn) · · ·more Φ̂I(z1)Φ̂I(z2) · · · |0〉 . (22)

involving additional fields Φ̂I(z1)Φ̂I(z2) · · ·. Note that in eq. (22) the fields are in the inter-

action rather than Heisenberg picture, so they evolve with time as free fields. Likewise, |0〉

is the free theory’s vacuum, i.e. the ground state of the free Hamiltonian Ĥ0 rather than the

full Hamiltonian Ĥ.
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To work out the relation between (20) and (22), we start by formally relating quantum

fields in the Heisenberg and the interaction pictures,

Φ̂H (x, t) = e+iĤtΦ̂S(x)e
−iĤt = e+iĤte−iĤ0tΦ̂I(x, t)e

+iĤ0te−iĤt. (23)

We may re-state this relation in terms of evolution operators using a formal expression for

the later,

ÛI(t, t0) = e+iĤ0te−iĤ(t−t0)e−iĤ0t0. (24)

Note that this formula applies for both forward and backward evolution, i.e. regardless of

whether t > t0 or t < t0. In particular,

ÛI(t, 0) = e+iĤ0te−iĤt and ÛI(0, t) = e+iĤte−iĤ0t, (25)

which allows us to re-state eq. (23) as

Φ̂H(x) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, 0). (26)

Consequently,

Φ̂H(x)Φ̂H(y) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0) (27)

because ÛI(x
0, 0)ÛI(0, y

0) = ÛI(x
0, y0), and likewise for n fields

Φ̂H(x1)Φ̂H(x2) · · · Φ̂H(xn) = (28)

= ÛI(0, x
0
1)Φ̂I(x1)ÛI(x

0
1, x

0
2)Φ̂I(x2) · · · ÛI(x

0
n−1, x

0
n)Φ̂I(xn)ÛI(x

0
n, 0).

Now we need to relate the free vacuum |0〉 and the true physical vacuum |Ω〉. Consider

the state ÛI(0,−T ) |0〉 for a complex T , and take the limit of T → (+1 − iǫ) × ∞. That
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is, ReT → +∞, ImT → −∞, but the imaginary part grows slower than the real part.

Pictorially, in the complex T plane,

T

(29)

we go infinitely far to the right at infinitesimally small angle below the real axis.

Without loss of generality we assume the free theory has zero vacuum energy, thus

Ĥ0 |0〉 = 0 and hence

ÛI(0,−T ) |0〉 = e−iĤT e+iĤ0T |0〉 = e−iĤT |0〉 . (30)

From the interacting theory’s point of view, |0〉 is a superposition of eigenstates |Q〉 of the

full Hamiltonian Ĥ,

|0〉 =
∑

Q

|Q〉 × 〈Q|0〉 =⇒ e−iĤT |0〉 =
∑

Q

|Q〉 × e−iTEQ 〈Q|0〉 (31)

In the T → (+1 − iǫ) × ∞ limit, the second sum here is dominated by the term with the

lowest EQ, so we look for the lowest energy eigenstate |Q0〉 with the same quantum numbers

as |0〉 (otherwise, we would have zero overlap 〈Q0|0〉). Obviously, such |Q0〉 is the physical

vacuum |Ω〉, so

ÛI(0,−T ) |0〉 −−−−−−−−→
T→(+1−iǫ)∞

|Ω〉 × e−iTEΩ 〈Ω|0〉 (32)

and therefore

|Ω〉 = lim
T→(+1−iǫ)∞

ÛI(0,−T ) |0〉 ×
e+iTEΩ

〈Ω|0〉
. (33)

Likewise,

〈Ω| = lim
T→(+1−iǫ)∞

e+iTEΩ

〈0|Ω〉
× 〈0| ÛI(+T, 0) . (34)
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Combining eqs. (27), (33), and (34), we may now express a two-point function as

〈Ω| Φ̂H(x)Φ̂H (y) |Ω〉 = lim
T→(+1−iǫ)∞

C(T )× 〈0|Big Product |0〉 (35)

where

C(T ) =
e2iTEΩ

| 〈0|Ω〉 |2
(36)

is a just a coefficient, and

Big Product = ÛI(+T, 0)ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0)ÛI(0,−T )

= ÛI(+T, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0,−T ).

(37)

For x0 > y0 the last line here is in proper time order, so if we re-order the operators, the

time-orderer T would put them back where they belong. Thus, using T to keep track of the

operator order, we have

Big Product = T
(

ÛI(+T, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0,−T )

)

= T
(

Φ̂I(x)Φ̂I (y)× ÛI(+T, x
0)ÛI(x

0, y0)ÛI(y
0,−T )

)

= T
(

Φ̂I(x)Φ̂I (y)× ÛI(+T,−T )
)

= T



Φ̂I(x)Φ̂I(y)× exp





−iλ

24

+T
∫

−T

dt

∫

d3z Φ̂4
I(t, z)







 .

(38)

Therefore

〈Ω|TΦ̂H(x)Φ̂H (y) |Ω〉 = (39)

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T

(

Φ̂I(x)Φ̂I (y)× exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 ,

where the spacetime integral has ranges

∫

d4z ≡

+T
∫

−T

dz0
∫

whole

space

d3z . (40)
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Similarly, the n-point correlation functions are given by

Fn(x1, . . . , xn) =

= 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T

(

Φ̂I(x1) · · · Φ̂I(xn)× exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 .

(41)

Note that the coefficient C(T ) — cf. eq. (36) — is the same for all correlation functions. In

particular, for n = 0 the F0 = 〈Ω|Ω〉 = 1, but it’s also given by eq. (41), hence

lim
T→(+1−iǫ)∞

C(T )× 〈0|T

(

exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 = 1. (42)

This allows us to eliminate the C(T ) factors from eqs. (41) by taking ratios of the free-theory

correlation functions,

Fn(x1, . . . , xn) = lim
T

〈0|T
(

Φ̂I(x1) · · · Φ̂I(xn)× exp
(

−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉

〈0|T
(

exp
(

−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉
. (43)

The limit here is T → (+1 − iǫ) ×∞, and the T dependence under the limit is implicit in

the ranges of the spacetime integrals, cf. eq. (40).
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