Free Fields, Harmonic Oscillators, and Identical Bosons

A free quantum field and its canonical conjugate are equivalent to a family of harmonic
oscillators (one oscillator for each plane wave), which is in turn equivalent to a quantum
theory of free identical bosons. In this note, I will show how all of this works for the
relativistic scalar field ¢(z) and its conjugate 7(z). And then I will turn around and show
that a quantum theory of any kind of identical bosons is equivalent to a family of oscillators.
(Harmonic for the free particles, non-harmonic if the particles interact with each other.)
Moreover, for the non-relativistic particles, the oscillator family is in turn equivalent to a

non-relativistic quantum field theory.

In this note we shall work in the Schrodinger picture of Quantum Mechanics because it’s
more convenient for dealing with eigenstates and eigenvalues. Consequently, all operators

— including the quantum fields such as ¢(x) — are time-independent.
FrOM RELATIVISTIC FIELDS TO HARMONIC OSCILLATORS

Let us start with the relativistic scalar field ¢(x) and its conjugate 7(x); they obey the

canonical commutation relations

(p(x), ()] = 0, [#(x),7#(x)] =0, [p(x),7#(x)] = 6@ (x - (1)
and are governed by the Hamiltonian

H =[x (37%(x) + 3(Vox)? + ImP¢*(x)). (2)

We want to expand the fields into plane-wave modes ¢y and 7y, and to avoid technical
difficulties with the oscillators and their eigenstates, we want discrete modes. Therefore, we
replace the infinite x space with a finite but very large box of size L x L x L and impose

periodic boundary conditions — @(z + L,y, z) = ¢(z,y+ L, z) = ¢(z,y, 2+ L) = §(z,y, 2),



etc., etc. This gives us discrete plane-wave modes
3/2_ikx 2 :
Yp(x) = L7 where kg, ky, k, = - Xan integer. (3)
Expanding the quantum fields into such modes, we get

@(X) — ZLf?)/ZBikX % @k) @k _ /d3x L73/2€7ikx % @(X),
k

wx) = Y LM x g m = /d?’xL?’/?eikx X 7(x).
k

A note on hermiticity: The classical fields ¢(x) and 7(x) are real (i.e., their values are real

numbers), so the corresponding quantum fields are hermitian, ¢'(x) = $(x) and #f(x) =

A~

7(x). However, the mode operators ¢, and 7, are not hermitian; instead, egs. (4) give us

ol =@ and 7] =7 .

The commutation relations between the mode operators follow from egs. (1), namely

[@k:‘ﬁk/} = 0, [frkjrk,] =0, [@kﬂ%k/] = i‘sk,—k’- (5)

The first two relations here are obvious, but the third needs a bit of algebra:
(Broiie) = [ [ L7310 o () ()
_ /d3X /d3xl L—3e—ikx€—ik/xl % 15(3) (X o X/)

— Z'L—S /dBX e—ix(k—l—k')

box
- i5k7—k, .
Equivalently,
b o T p— AT o p— ) 5 b o pr— /\T o T pr— ) 5 7
[SDIU Wk/] [Soka 7Tk/] L0k Kk [Soka 7ka] [(Pka 71'k/] ?0k+Kk',0 - ( )



Now let’s express the Hamiltonian (2) in terms of the modes. First,

/dBXﬁQ(X) /dgxﬁT /d3 ZZL 3 —zkx —l—zkx % Altﬁk/

kK K
= ﬁliﬁk/ x | L73 /dgxeix(k/k) = Ok (8)
k.k’ box
= > i
k
Similarly,
o) = Y da ©)
Kk
Finally,
Vo(x) = L2 x ik gy ZL 3/2¢- —ik @ (10)
Kk
and hence

/d3 Zk2 PP - (11)

Thus altogether, the Hamiltonian is
=3 (balm + 30 +m?) gldy) (12)
Kk

Clearly, this Hamiltonian describes a bunch of harmonic oscillators with frequencies
wk = Vk? +m? (in the h = ¢ = 1 units). But since the mode operators are not hermitian,
converting them into creation and annihilation operators takes a little more work then usual.

We define

. 1 . N
ay = NG (wk<pk + zwk> ,
and consequently

NI < o w)
i = e (wmify i) = o (el + i)
-k 2W—k -k -k \/M k k/>
al, = ! < kcpT _ ) = —1 (wkgo — T
-k 2w—k k -k \/m k k



Note that dL #a_, and a_, # leé instead, we have independent creation and annihilation
T

operators a; and a, for every mode k. The commutations relations between these operators

are
i, a] = 0, [al,al] =0, [ayaL] = Sk - (14)
Indeed,
L 1 fia A e o e s L
] = —— (e [ D] + i/ e ] + 0 [ o] = o]
1
= 0+iw/X—i5k k/0+iw><+i5k o + 0
4ww’ ( i i ) (15)
5 y W —w
= Ok+k’
K0 dww’

=0 because w’ = w when k + k' = 0.

Similarly, [}, af,] = 0. Finally,

JU 1 A A A e A .
[ak7 a;r(’] = \/m <ww/ [@k? QOI(/] + Zw/ [T‘—ka 90;[(/] - W [kaaﬂ';r(/] + [Wkaﬂlt/])
1
= (0 + i x —ifkp — iw X +idk + 0)
dww' (16)
w+ W
= Okx X
’ 4w’
= Ok because w’ = w when k/ = k.

To re-obtain the field mode operators ¢, and 7, from the creation and annihilation
operators, let us combine the first and the last equations (13) for the @, and dJr_k. Adding

and subtracting those equations, we find

A A A N N w o
ay + aT_k = 2wk X @y, —iay + zaT_k = 1/71( X T - (17)



Consequently,

el = % x (@) +a_)(a, +al )
= S (afay + afaly + aay +aaly).
A = S (iaf, — da_y) (i +ial ) N
= S (aay — afaly — agay +aaly), .
WPl + Ame = wiex (afa, +aal))
= wiox (afay +ala, + 1),
and hence Hamiltonian (12) becomes
i =3 b x (afay + alyay +1) = Y wy (afa + 1) (20)
k k

Clearly, this Hamiltonian — together with the commutation relations (14) — describes an

infinite family of harmonic oscillators, one oscillator for each plane-wave mode k.

Now consider the eigenvalues and the eigenstates of the multi-oscillator Hamiltonian (20).
A single harmonic oscillator has eigenvalues E,, = w(n + %) where n =0,1,2,3,.... For the
multi-oscillator system at hand, each n, = d;r{dk commutes with all the other 7, so we may

diagonalize them all at the same time. This gives us eigenstates
[{nx for all k}) = ® |nx) of energy Ey, ) = Zwknk. (21)
k k

Here each ny is an integer > 0. Moreover, all combinations of the ny are allowed because
the d;r{ and a, operators can change a particular ny — ny = 1 without affecting any other
ni. (This follows from [, ,7,,] = 0 and [dlt,ﬁk,] =0 for k¥’ # k.) Thus, the Hilbert space
of the multi-oscillator system — and hence of the free quantum field theory — is a direct

product of Hilbert spaces for each oscillator,

H(QFT) = ® H(harmonic oscillator for mode k). (22)
k



FROM THE MULTI-OSCILLATOR SYSTEM TO IDENTICAL BOSONS

A constant term in the Hamiltonian of a quantum system does not affect its dynamics in
any way, it simply shifts energies of all states by the same constant amount. So to simplify
our analysis of the multi-oscillator system in particle terms, let’s subtract the infinite zero-

point energy Ey = >, swk from the Hamiltonian (20), thus

~

H— H - By =Y wali,. (23)
k

I’ll come back to the zero-point energy, but right now let’s focus on other issues.

In the multi-oscillator Hilbert space (22) each occupation number ny is independent from
all others. However, states of finite energy must have finite N = ), ny, so let us re-organize

the Hilbert space into eigenspaces of the N = >k ™y operator,

H(QFT) = (R H(modek) = @D Hy, (24)
k

and consider what do those eigenspaces look like for different N. For N = 0, the H( spans
a single state, the vacuum |0) = |all ny = 0). For N = 1, the #H; spans eigenstates with a
single ny = 1 while all other ny, = 0. Renaming such eigenstates |k) = |nx = 1, othern = 0)

and noting their energies
B(K) = we = ViE+m2, (25)

we identify the H; as a Hilbert space of a free relativistic particle with Hamiltonian

]j[particle _ ‘/132 +m2_ (26)

For N > 1, we may have several modes with ny > 0, but for a finite N there can be only
a finite number of such modes. So we rename such a state |ky,...,ky) by listing only the

modes k with ny, > 0 and repeating each k ny times. For example,
13k, 21/, 27, L, Oeverythingelse) = |k, k. k, k', K/ kK" K" k") . (27)

In such notations, the Hy Hilbert space spans eigenstates |ki, ko, ..., ky) labeled by N

modes ki, ..., ky (such modes may coincide but do not have to). The energy of such an



eigenstate is
E(’kl,kg,...,k]v» = Wk, + Wk, + -+ Wk (28)

which allows us to identify the Hy as the Hilbert space of N free relativistic particles with

Hamiltonian
N
JyN particles Z \/pQ(ith) + m2. (29)
i=1
However, treating the ki, ..., ky momenta of N particles as independent over-counts the

quantum states because the occupation numbers nj do not specify the order in which we
list the modes k;. For example, both |kj, ko) and |k, ki) both correspond to the same state

I, 1x,, Oothers>. More generally,
{nx}) = |ki,...,ky) = |any permutation of the ky,...,ky). (30)

In other words, the N relativistic particles in the Hy are identical bosons.

Altogether, we have

@ H(N identical bosons). (31)

H(QFT) = ®’H(harmonic oscillator #k) =
k N=0

Hilbert spaces of this kind — any number N of identical bosons (or fermions) are known
as Fock spaces. So the Hilbert space of the quantum field is the same as the Fock space of

particles, and the Hamiltonians are also the same:

Hlp(x),7(x)] = Z,/Pi + m2. (32)

N
1=0
In other words, the quantum theory of the free field is identical to the quantum theory of (any
number of) free identical bosons. For the theory in question, the field is a relativistic scalar
¢(x) and the bosons are spinless relativistic particles. But in exactly the same manner, the
quantum theory of Maxwell fields F*¥(x) is identical to the quantum theory of (any number

of) photons — which are massless relativistic particles with two polarizations states (per

photon) and obey Bose statistics.



Quantization of field theories with non-quadratic Hamiltonians (and hence non-linear
classical equations of motion) also leads to theories equivalent to theories of quantum par-
ticles, but this time the particles are not free but interact with each other. In relativistic
theories, interactions also allow for creation and destruction of particles; such processes have
to be described in terms of the Fock space rather than a fixed-N Hilbert space. In non-
relativistic theories, the net particle number N is sometimes conserved, sometimes not, but

even when it is conserved, the Fock-space formalism is often convenient.

Finally, a few words about the zero-point energy Ey = ) %wk. From the particles’
point of view, Ej is the vacuum energy. It does not affect any properties of the individual
particles or the way they interact with each other, so one usually simply ignores the Ejy and
proceeds as if it was not there. However, in some situations Ey becomes important: (1) When
one couples a quantum field theory to general relativity, vacuum energy density becomes the
cosmological constant. (2) When a QFT has some variable parameters, vacuum energy acts
as an effective potential for those parameters. This is important for cosmology of the early
Universe, and also for the Casimir effect. Note that while the Ej itself is infinite (except
in supersymmetric theories where infinities cancel out between the bosonic and fermionic
fields), it can be written as a sum of an infinite constant and a finite part which changes
with parameters by a finite amount AFEy. It’s the finite part which is responsible for the

effective potential and for the Casimir effect.

FrROM IDENTICAL BOSONS BACK TO CREATION AND ANNIHILATION OPERATORS.

Quantum Mechanics of many identical bosons can be done in the wave-function formal-
ism, but it’s often convenient to use the formalism of the creation and annihilation operators
in the Fock space. For historical reasons, this formalism is called “second quantization”, but
this name is misleading: there is no new quantization, just the same old quantum mechanics
re-written in a new language. In this section, I will develop the second quantization formal-
ism for the ordinary non-relativistic particles (for example, helium atoms), although it works

in the same way for all kinds of particles, or even for quasiparticles such as phonons.



The Fock space is the Hilbert space of an arbitrary number of identical bosons,

F = @H(Nbosons), (33)
N=0

and our first task is to construct the basis of this space which may be interpreted in terms
of occupation numbers n,. Here a’s should label 1-particle quantum states, so we start with
the single-particle Hilbert space H; and build some kind of a complete orthonormal basis
of states |a) with wave-functions ¢ (x)" I assume |a) to be eigenstates of some kind of
a l-particle Hamiltonian, H; |a) = €4 |a), but the specific form of the operator Hj is not

important for our purposes. For simplicity, I also assume the spectrum of « to be discrete.T

Given a one-particle basis {|a)}, we may construct a complete basis of the two-particle
Hilbert space Ho using eigenstates of the operator Ho = Hy (1) + H;(2"). Naively, this op-
erator has eigenstates |a)®|3) with energies €,+4€g and wave functions ¢ (x1) x ¢g(x2). How-
ever, two identical bosons must have a symmetric wave function ¢og(X1,X2) = Ppas(x2,x1).

Consequently, we must symmetrize:

) ©18) + 18) @ |y

for B # «a,
o, 8) = |B,a) = V2 (34)
) @ |av) for § = a,
or in the wave-function Language
ba(X1)0(x2) + O5(X1)Pa(x2) for § # a
bap(X1,X2) = ¢pa(X1,X2) = V2 (35)
Pa(X1)Pa(x2) for 8 = a,
Similarly, wave functions of N identical bosons must be totally symmetric,
¥(x1,%2,...,xy) = t(any permutation of the x1,X2,...,Xy). (36)

* By abuse of notations, I include spin, isospin, and any other discrete quantum numbers a particle may
have with the x = («, y, 2, spin, etc.).

T A continuum spectrum would lead to the same physics, but we would need more complicated formulae
to handle states with occupation numbers n, > 1 for continuous a.



To construct a complete basis of such N-particle wave functions, we use eigenstates of the
N
Hy =) H(i*" particle). (37)
i=1

Without the symmetry requirement (36), all eigenstates of this Hamiltonian would be of the
form o) ®|5) ® - - - ® |w), with energies e, + €5+ - - - + €4, but because we are in the Hilbert

space of N identical bosons, we must symmetrize such states according to

o, 3 > la) ® [6) ® -+ ® |w) + all distinct permutations of «, 3, ... ,w
0{7 PARE) w = 0 O 0 bl
V# of distinct permutations

Pa(x1)pg(x2) - - ¢ (xn) + all distinct permutations of a, 3, ... ,w

¢a5...w(xl, X9, ... ,XN) =

\/# of distinct permutations
(38)

Consequently, the order of the N single-particle labels «, 3,...,w of a state (38) does not

maftter,

la, B, ...,w) = |any permutation of the o, 3,...,w), (39)

which means that we may uniquely specify such a state in terms of its occupations numbers

ng that count how many times each 3 appears in the list «, §,...,w. For example,
|Oé, Oé, Oé, B7 67 77 77 57 €> - ‘3017 2ﬁ7 2’}/7 ]-57 167 Oallothers> . (40)
Formally,
N
lay ...,an) = |{ng}) where ng = 25%5 : (41)
i=1

Note that > gnp =N, so all but a finite number of the occupations numbers must vanish.

The states (38) are eigenstates of the Hamiltonian (37) in the N-boson Hilbert space Hy,
so together they form a complete orthonormal basis of the H . In terms of the occupation
numbers, this basis comprises states |{n3}> where ng are non-negative integers which total

up to N, > gng = N. Removing the latter constraint, we construct a bigger Hilbert space

10



which spans |{ng}) with all values of the N = 3 snp. Physically, this space is the Fock

space
o0
F = |vacuum) @ H1 @ Ho @ Hz & --- = @HN (42)
N=0
of the quantum theory of an arbitrary number N = 0,1, 2,3, ... of identical bosons.

In other words, what we have done thus far is to construct a basis of the entire Fock
space comprising states |{n5}> with definite occupation numbers. We can think of this basis
as a common eigenbasis of a family of commuting hermitian operators ﬁﬁ with eigenvalues
ng = 0,1,2,.... Such operators are very useful for extending additive operators such as (37)

to the whole Fock space and for writing them in compact form

a

= o 43
whole F ; 65716 ( )

Indeed, the operators (37) and (43) have the same eigenstates |ag,- -+, ay) and the same

eigenvalues ZB €4y = €a, T+ €ay -

For example, consider free non-relativistic particles (in a big box). The single-particle
Hamiltonian is H; = %PQ, so we may identify |a) as |p). Consequently, the Fock-space

Hamiltonian

I:Itot = Z ;; X ﬁp (44)
p

comprises net Hamiltonians Hy = 3 ﬁfﬂ(z@) for any number N of free particles. Like-

wise, the Fock-space momentum operators

ptot = Zp X TALp (45)
p

comprises net momenta Py = 3, P(ith) of N particles for any N.

11



To construct more interesting operators in the Fock space we need the creation and
annihilation operators, so our next task is to construct harmonic-oscillator-like dL and agq.
We begin this by noticing that in the Fock space, the occupation numbers ng are completely
independent from each other. That is, given any state |{n5}> € F, we may change one
particular n, — n,, £ 1 while keeping all the other ng unchanged, n’ﬁ = ng for 8 # «, and
the state [{nj;}) would be a valid state in the Fock space 7. This means that the Fock space

is a direct product of single-mode Hilbert spaces,

F = ®’H(m0de B) where H(mode [3) spans |n5> for ng =0,1,2,3,....  (46)
B

The Hilbert space of a single mode looks like a Hilbert space of a Harmonic oscillator,

so we may construct oscillator-like creation and annihilation operators according to

n|n—1) forn >0,
atn)y ¥ Vnrin+1), ap) vijn=1) (47)
0 for n =0,
and hence a'a = n and [d,d*] = 1. Similarly, the direct product of single-mode Hilbert

spaces in eq. (46) looks like a system of many harmonic oscillators, one oscillator for each
mode 3. This allows us to construct a whole family of oscillator-like creation and annihilation

operators in the Fock space, namely

al, [{ns}) et e 1 [{ns = ng + dap}),

. aef | Vna ‘{n'ﬁ =ng—0ap}) for ng >0, (48)
ta Hnﬁ}> 0 for n, =0

[0 I
h, = ala, .

«

It is easy to see from these definitions that the operators &L, Gq, and ne for different modes
a commute with each other, but for the same mode [aq, &E} = 1. Altogether, we have the

bosonic commutation relations

(g, ag) = 0, [af.al] =0, 4,45 = dap. (49)

12



The operators dL and a,, do not commute with the net particle number operator N = > 3 n 5

A

Instead, [N, d&] = +d£, [N, aq| = —aq and hence

Naf, = al(N+1) and Na, = a,(N —1), (50)

an &E operator creates a particle while an a, operator annihilates (destroys) a particle.

That’s why the diy are called creation operators and the a,, are called annihilation operators.

Of particular interest to QM of many-particle systems are operator products aLa L
dL&E&Vd 5> €tc., containing equal numbers of creation and annihilation operators. Such prod-
ucts — and their sums — commute with N and may be used to construct physically inter-
esting operators for systems where the particles are never created or destroyed. For example,
for the free non-relativistic particles (in a big box)

~ 2 ~
Heot = Z;;agap, Pt = Y pabiy. (51)

m
p p

cf egs. (44) and (45).

More generally, consider any one-body (i.e., one body at a time) additive operator which

acts on N-particle states as
N
A™Y(N particles) = ZAl(ith particle) (52)
i=1

where A; is some kind of a single-particle operator. Let (a| A1 |8) be its matrix elements.

Then in the Fock space formalism, the net operator (52) acts as
At =3 "(al Ay |8) x alag. (53)
B
In particular, when the 1-particle states |«) are eigenstates of the Ay, this formula reduces to

Atot — Z(eigenvalue)a X ala, . (54)

(%

At this point in the argument, the special case (54) should be obvious to you. The more gen-
eral case (53) with non-diagonal matrix elements (a| A; |3) is not obvious, so I am assigning

it as a part of your next homework (set#4).

13



Another part of your next homework is to show that if three single-particle operators 1211,
31, and C are related via commutation relation [1211, Bl] = C’l, then the corresponding Fock-
space operators At"t, Bmt, and C°t defined according to eq. (53) obey the same commutation
relation [fltOt, Bmt] = (%t For example, consider a gas of free atoms with nonzero spin s.
(Integer s to make the bosons rather then fermions.) In terms of the creation and annihilation

operators, the net spin operator for the whole gas becomes

§net = sz87mls <S7m8’ sl

p

S, My ) X al , a (55)

P,ms a/pvm{s )

and since the single atom’s spin operator obeys the angular momentum commutation re-

lations [S%,57] = i€*SF the net spin operator satisfies the same relations [Si., S7.,] =
ek gk

Interactions between particles are described by operators involving two or more particles
at the same time. For example, a two-body potential V5 (x; —x;) gives rise to the net potential

operator which acts on a wave functions of N particles as

~

Vit U(x1,...xy) = 5 > Vh(x —x)¥(x1,...,xp). (56)

In the Fock-space formalism, this operator becomes

Voet = & > Vasos ><czga}3a5a7 (57)
a7/87776

where V,, 5,6 are the matrix elements

Vi = [t [ixai0a)d50) % Vil —x) x 00052 69

In particular, in the momentum basis |p),

Vp’l,p’g,pl,pz = L_35p3+p’2,p1+p2 X /dx el Va(x) where q = P/1 —P1=PpP2— p’z .
(59)

14



More generally, a two-body additive operator of the form

ij=1,...N
Buet(N particles) = 3 Z By (i™ and 5™ particles) (60)
i#]

in the Fock space formalism becomes

But = 3 Y Bapns X ahabasa, — where Bagys = ((a]® (8))Ba(ly) ®18)). (61)
avﬁv’%é

Note that the matrix elements B, g, s are not symmetrized with respect to particle per-
mutations v <+ § and « <> [; instead, the operator product deT@ddfzy takes care of the

symmetrization thanks to éa, = a4, and alal; = alal.

Proving eq. (61) is left as an exercise to the reader; indeed, it’s a part of your next

homework (set#4).

Generalization of the Fock-space formalism to operators involving more than two par-
ticles at the same time is straightforward. Three-body additive operators become sums
of dzdédiagded s With appropriate matrix-element coefficients, four-body operators involve

products afatafataaaa of four creation and four annihilation operators, etc., etc.

NoON-RELATIVISTIC QUANTUM FIELDS

In the previous section, we defined creation and annihilation operators in terms of a
particular basis of single-particle states |«). Changing to a new basis {|u)} involves a lin-
ear transform |u) = > |a) x (ap) and hence a similar linear transform of creation and

f

annihilation operators from a, and aq to dL and a,, namely

i = Yahx(eln), 4, = 3o x {ula). (62

« «

Indeed, in the Fock space |a) = al, |0) while |pu) = dL |0), so the creation operators transform
exactly like Dirac kets; by Hermitian conjugation, the annihilation operators transform like
Dirac bras. And thanks to unitarity of this transform, the a, and dL obey the same bosonic

T

commutation relations (49) as the aq and agq.

15



Of particular importance is the coordinate basis in which x-labeled operators become

quantum fields. Specifically, the creation field
Vix) = al =) al x ¢4(x) (63)
o
which creates a particle at point x, and the annihilation field
V(x) = 4y = D Gy X $p(X) (64)
a

which annihilates a particle at point x. These fields obey the continuous version of the

bosonic commutation relations (49), namely

~

[‘P(x),@(x’)} — 0, [@T(x),@f(x')] — 0, [@(x),@(x')} = 5B (x—x). (65)

In the non-relativistic many-particle theory, many operators may be expressed in terms
of creation and annihilation fields as f d3x (something local). For example, the net particle

number operator N becomes
N = aha, = /d3x@T(x)\T:(x), (66)
[0

which tells us that 7 (x) = WT(x)¥(x) is the local particle density operator. Similarly, the

net momentum operator is
Pt = Y paba, = / Px Ut (x) x =iV (), (67)
p
and the net non-relativistic kinetic energy operator is

2 2
rrkin P .. = -V ~ 1 ~ —~
Har =" ——ala, :/d3xqu(x)2—x11(x) = +5— BxVIUi(x) VI(x). (68)

net S om m m

Now consider non-relativistic particles in an external potential V(x) but not interacting

16



with each other. Clearly, the net potential operators is
Voo = [V ) % BT (0 (69)
and hence the Hamiltonian is

A A ~ 1 ~ ~ ~ ~
H = HNY 4 Vi —/d3x <% VUi(x)  VI(x) + Ve(x)\lﬁ(x)\lf(x))

_ /d?’x(I\IT(X) (—QV—Q + Ve(x)) ().

m

(70)

In this theory, the Heisenberg equations for the quantum fields become similar to the ordinary
Schrodinder equations for single-particle wave functions. Indeed, in the Heisenberg picture

of QM, the time-dependent quantum fields satisfy

~ ~

z’a\lf(x,t) = [@(Xat)aH] - (_% " Ve(x)) ¥ (71)

—z%@*(x,t) — [ﬁ,@(x,t)] = (_v_2 + Ve(x)) Ul(x,t).

Despite the similarity, these are not the true Schrodinger equations of the many-particle sys-
tem because: (1) They apply in the wrong picture of QM (Heisenberg instead of Schrédinger).
(2) The true wave-function ¥ (x1, ..., xy;t) of N particles depends on all of their coordinates
X1,...,Xy, unlike the quantum field \Tl(x, t) which depends on a single x regardless of how
many particles we have (or rather had since ¢ does not preserve N). (3) Adding interac-
tions to the Hamiltonian (70) would make egs. (71) non-linear, while the true Schrodinger

equations are always linear, no matter what.

However, the Schrodinger-like form of eqs. (71) suggests that the quantum fields \/I}(X, t)
and (I\IT(X, t) may be obtained via second quantization. It works like this: First, one quantizes
a single particle and writes the Schrodinger equation for its wave function. Second, one re-
interprets this wave function as a classical field 1)(x,t) and the the Schrodinger equation

becomes an Euler-Lagrange field equation which follows from the Lagrangian density

. K2
Loy = —hIm(y™y) — %V@D*Vﬂ) — Ve(x) x 9™ (72)

(Note, —f Im(1)*9)) = ihp*h+a total derivative.) Third, one goes to Hamiltonian formalism

where the canonical conjugate field for 1(x) is w(x) = thi*(x) and the classical Hamiltonian
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is
2
H = [d*x (mw X ) — E) = /d3x (:—m ViV — Vo(x) x ¢*¢> . (73)

And at this point one quantizes the fields ¥ (x) and ¥*(x), hence the name “second quantiza-
tion”. (The “first quantization” was writing down the Schrédinger equation for one particle.)
Consequently, 1(x) and 1*(x) become quantum fields ¥ (x) and 1 (x) obeying commutation
relations (65) (which follow from ihy)*(x) being the canonical conjugate of ¥(x)), and the

classical Hamiltonian (73) becomes the Hamiltonian operator (70).

Historically, second quantization was used as heuristic for deriving the non-relativistic
quantum field theory. Some people tried to take the second quantization literally and got
into all kinds of trouble because it does not make physical sense: A wave function is not
a classical field, and it should not be quantized again. Nevertheless, the result of second
quantization is a perfectly good quantum field theory, but there is only one quantization,
and the physical content of the theory is not one particle but an arbitrary number of identical
bosons, and the {I}(X) and \/I}T(X) are not quantized-again wave functions but quantum fields

which destroy and create particles in the Fock space.

The physically correct way to derive the non-relativistic QFT is the way we did it in
this note, the second quantization is only an old heuristic. Today, when one talks about a
second-quantized theory, it is simply a name for a quantum theory of an arbitrary number
of particles, usually formulated in terms of creation and annihilation operators in the Fock

space.

18



