
PHY–396 K. Problem set #3. Due September 25, 2008.

1. Consider a non-abelian gauge theory comprising N complex scalar fields φi(x) and N2−1

real vector fields Aaµ(x). In matrix notations, the Lagrangian of the theory is

L = − 1

2g2
tr
(
FµνFµν

)
+ DµΦ†DµΦ − m2 Φ†Φ. (1)

(a) Derive classical equations of motion for all the fields and write those equation in a

covariant form. In particular, show that the vector fields satisfy

DµF
µν(x) = g2 Jν(x) ≡ g2

∑
a

λa

2
× Jaν(x) (2)

where the currents Jaµ(x) involve the scalar fields and their covariant derivatives.

(b) Show that regardless of the specific form of the currents Jaµ(x), eqs. (2) require those

currents to be covariantly conserved, DµJ
µ(x) = 0.

(c) Show that when the scalar fields Φ(x) and Φ†(x) satisfy their equations of motion,

the currents Jµ(x) are indeed covariantly conserved.

Note that covariantly conserved currents Jaµ(x) do not give rise to conserved charges

Qa =
∫
d3x Ja0(x, t). That’s one more reason why the non-abelian gauge theories are

much more complicated than the electromagnetism.

2. Consider a massive relativistic vector field Aµ(x) with the Lagrangian density

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (3)

(in h̄ = c = 1 units) where the current Jµ(x) is a fixed source for the Aµ(x) field. Because

of the mass term, the Lagrangian (3) is not gauge invariant. However, we assume that the

current Jµ(x) is conserved, ∂µJ
µ(x) = 0.
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In an earlier homework (set 1, problem 1) we have derived the Euler–Lagrange equations

for the massive vector field. In this problem, we develop the Hamiltonian formalism for

the Aµ(x). Our first step is to identify the canonically conjugate “momentum” fields.

(a) Show that ∂L/∂Ȧ = −E but ∂L/∂Ȧ0 ≡ 0.

In other words, the canonically conjugate field to A(x) is −E(x) but the A0(x) does not

have a canonical conjugate! Consequently,

H =

∫
d3x

(
−Ȧ(x) · E(x) − L

)
. (4)

(b) Show that in terms of the A, E, and A0 fields, and their space derivatives,

H =

∫
d3x

{
1
2E

2 + A0 (J0 −∇ · E) − 1
2m

2A2
0 + 1

2 (∇×A)2 + 1
2m

2A2 − J ·A
}
.

(5)

Because the A0 field does not have a canonical conjugate, the Hamiltonian formalism does

not produce an equation for the time-dependence of this field. Instead, it gives us a time-

independent equation relating the A0(x, t) to the values of other fields at the same time t.

Specifically, we have

δH

δA0(x)
≡ ∂H

∂A0

∣∣∣∣
x

− ∇ · ∂H
∂(∇A0)

∣∣∣∣
x

= 0. (6)

At the same time, the vector fields A and E satisfy the Hamiltonian equations of motion,

∂

∂t
A(x, t) = − δH

δE(x)

∣∣∣∣
t

≡ −
[
∂H
∂E
− ∇i

∂H
∂(∇iE

]
(x,t)

,

∂

∂t
E(x, t) = +

δH

δA(x)

∣∣∣∣
t

≡ +

[
∂H
∂A
− ∇i

∂H
∂(∇iA

]
(x,t)

.

(7)

(c) Write down the explicit form of all these equations.

(d) Verify that the equations you have just written down are equivalent to the relativistic

Euler–Lagrange equations for the Aµ(x), namely

(∂µ∂µ +m2)Aν = ∂ν(∂µA
µ) + Jν (8)

and hence ∂µA
µ(x) = 0 and (∂ν∂ν +m2)Aµ = 0 when ∂µJ

µ ≡ 0, cf. homework #1.
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3. Finally, let’s quantize the massive vector fields. Since classically the −E(x) fields are

canonically conjugate momenta to the A(x) fields, the corresponding quantum fields Ê(x)

and Â(x) satisfy the canonical equal-time commutation relations

[Âi(x, t), Âj(y, t)] = 0,

[Êi(x, t), Êj(y, t)] = 0,

[Âi(x, t), Êj(y, t)] = −iδijδ(3)(x− y)

(9)

(in the h̄ = c = 1 units). The currents also become quantum fields Ĵµ(x, t), but they

are composed of some kind of charged degrees of freedom rather than the vector fields in

question. Consequently, the Ĵµ(x, t) commute with both Ê(x) and Â(x) fields.

The classical A0(x, t) field does not have a canonical conjugate and its equation of motion

does not involve time derivatives. In the quantum theory, Â0(x, t) satisfies a similar time-

independent constraint

m2Â0(x, t) = Ĵ0(x, t) − ∇ · Ê(x, t). (10)

From the Hilbert space point of view, this is an operatorial identity rather than an equation

of motion. Consequently, the commutation relations of the Â0(x, t) field follow from

eqs. (9); in particular, Â0(x, t) commutes with the Ê(x, t) but does not commute with the

Â(x, t).

Finally, the Hamiltonian operator follows from the classical eq. (5), namely

Ĥ =

∫
d3x

{
1
2Ê

2 + Â0

(
Ĵ0 −∇ · Ê

)
− 1

2m
2Â2

0 + 1
2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
=

∫
d3x

{
1
2Ê

2 +
1

2m2

(
Ĵ0 −∇ · Ê

)2
+ 1

2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
(11)

where the second line follows from the first and eq. (10).

Your task is to calculate the commutators [Âi(x, t), Ĥ] and [Êi(x, t), Ĥ] and write down

the Heisenberg equations for the quantum vector fields. Make sure those equations are

similar to the Hamilton equations for the classical fields.
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