1. Consider a non-abelian gauge theory comprising N complex scalar fields $\phi_i(x)$ and $N^2 - 1$ real vector fields $A^a_{\mu}(x)$. In matrix notations, the Lagrangian of the theory is

$$\mathcal{L} = -\frac{1}{2g^2} \operatorname{tr} \left(F^{\mu\nu} F_{\mu\nu} \right) + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - m^2 \Phi^{\dagger} \Phi.$$
 (1)

(a) Derive classical equations of motion for all the fields and write those equation in a covariant form. In particular, show that the vector fields satisfy

$$D_{\mu}F^{\mu\nu}(x) = g^2 J^{\nu}(x) \equiv g^2 \sum_{a} \frac{\lambda^a}{2} \times J^{a\nu}(x)$$
 (2)

where the currents $J^{a\mu}(x)$ involve the scalar fields and their covariant derivatives.

- (b) Show that regardless of the specific form of the currents $J^{a\mu}(x)$, eqs. (2) require those currents to be *covariantly conserved*, $D_{\mu}J^{\mu}(x) = 0$.
- (c) Show that when the scalar fields $\Phi(x)$ and $\Phi^{\dagger}(x)$ satisfy their equations of motion, the currents $J^{\mu}(x)$ are indeed covariantly conserved.

Note that covariantly conserved currents $J^{a\mu}(x)$ do not give rise to conserved charges $Q^a = \int d^3 \mathbf{x} J^{a0}(\mathbf{x}, t)$. That's one more reason why the non-abelian gauge theories are much more complicated than the electromagnetism.

2. Consider a massive relativistic vector field $A^{\mu}(x)$ with the Lagrangian density

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 A_{\mu} A^{\mu} - A^{\mu} J_{\mu}$$
(3)

(in $\hbar = c = 1$ units) where the current $J^{\mu}(x)$ is a fixed source for the $A^{\mu}(x)$ field. Because of the mass term, the Lagrangian (3) is not gauge invariant. However, we assume that the current $J^{\mu}(x)$ is conserved, $\partial_{\mu}J^{\mu}(x) = 0$. In an earlier homework (set 1, problem 1) we have derived the Euler-Lagrange equations for the massive vector field. In this problem, we develop the Hamiltonian formalism for the $A^{\mu}(x)$. Our first step is to identify the canonically conjugate "momentum" fields.

(a) Show that $\partial \mathcal{L} / \partial \dot{\mathbf{A}} = -\mathbf{E}$ but $\partial \mathcal{L} / \partial \dot{A}_0 \equiv 0$.

In other words, the canonically conjugate field to $\mathbf{A}(\mathbf{x})$ is $-\mathbf{E}(\mathbf{x})$ but the $A_0(\mathbf{x})$ does not have a canonical conjugate! Consequently,

$$H = \int d^3 \mathbf{x} \left(-\dot{\mathbf{A}}(\mathbf{x}) \cdot \mathbf{E}(\mathbf{x}) - \mathcal{L} \right).$$
(4)

(b) Show that in terms of the \mathbf{A} , \mathbf{E} , and A_0 fields, and their space derivatives,

$$H = \int d^{3}\mathbf{x} \left\{ \frac{1}{2}\mathbf{E}^{2} + A_{0} \left(J_{0} - \nabla \cdot \mathbf{E} \right) - \frac{1}{2}m^{2}A_{0}^{2} + \frac{1}{2}\left(\nabla \times \mathbf{A} \right)^{2} + \frac{1}{2}m^{2}\mathbf{A}^{2} - \mathbf{J} \cdot \mathbf{A} \right\}.$$
(5)

Because the A_0 field does not have a canonical conjugate, the Hamiltonian formalism does not produce an equation for the time-dependence of this field. Instead, it gives us a timeindependent equation relating the $A_0(\mathbf{x}, t)$ to the values of other fields at the same time t. Specifically, we have

$$\frac{\delta H}{\delta A_0(\mathbf{x})} \equiv \left. \frac{\partial \mathcal{H}}{\partial A_0} \right|_{\mathbf{x}} - \left. \nabla \cdot \frac{\partial \mathcal{H}}{\partial (\nabla A_0)} \right|_{\mathbf{x}} = 0.$$
(6)

At the same time, the vector fields **A** and **E** satisfy the Hamiltonian equations of motion,

$$\frac{\partial}{\partial t}\mathbf{A}(\mathbf{x},t) = -\frac{\delta H}{\delta \mathbf{E}(\mathbf{x})}\Big|_{t} \equiv -\left[\frac{\partial \mathcal{H}}{\partial \mathbf{E}} - \nabla_{i}\frac{\partial \mathcal{H}}{\partial(\nabla_{i}\mathbf{E})}\right]_{(\mathbf{x},t)},$$

$$\frac{\partial}{\partial t}\mathbf{E}(\mathbf{x},t) = +\frac{\delta H}{\delta \mathbf{A}(\mathbf{x})}\Big|_{t} \equiv +\left[\frac{\partial \mathcal{H}}{\partial \mathbf{A}} - \nabla_{i}\frac{\partial \mathcal{H}}{\partial(\nabla_{i}\mathbf{A})}\right]_{(\mathbf{x},t)}.$$
(7)

- (c) Write down the explicit form of all these equations.
- (d) Verify that the equations you have just written down are equivalent to the relativistic Euler-Lagrange equations for the $A^{\mu}(x)$, namely

$$(\partial^{\mu}\partial_{\mu} + m^2)A^{\nu} = \partial^{\nu}(\partial_{\mu}A^{\mu}) + J^{\nu}$$
(8)

and hence $\partial_{\mu}A^{\mu}(x) = 0$ and $(\partial^{\nu}\partial_{\nu} + m^2)A^{\mu} = 0$ when $\partial_{\mu}J^{\mu} \equiv 0$, cf. homework #1.

3. Finally, let's quantize the massive vector fields. Since classically the $-\mathbf{E}(\mathbf{x})$ fields are canonically conjugate momenta to the $\mathbf{A}(\mathbf{x})$ fields, the corresponding quantum fields $\hat{\mathbf{E}}(\mathbf{x})$ and $\hat{\mathbf{A}}(\mathbf{x})$ satisfy the canonical equal-time commutation relations

$$\begin{aligned} [\hat{A}_i(\mathbf{x},t), \hat{A}_j(\mathbf{y},t)] &= 0, \\ [\hat{E}_i(\mathbf{x},t), \hat{E}_j(\mathbf{y},t)] &= 0, \\ [\hat{A}_i(\mathbf{x},t), \hat{E}_j(\mathbf{y},t)] &= -i\delta_{ij}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \end{aligned}$$
(9)

(in the $\hbar = c = 1$ units). The currents also become quantum fields $\hat{J}^{\mu}(\mathbf{x}, t)$, but they are composed of some kind of charged degrees of freedom rather than the vector fields in question. Consequently, the $\hat{J}^{\mu}(\mathbf{x}, t)$ commute with both $\hat{\mathbf{E}}(\mathbf{x})$ and $\hat{\mathbf{A}}(\mathbf{x})$ fields.

The classical $A^0(\mathbf{x}, t)$ field does not have a canonical conjugate and its equation of motion does not involve time derivatives. In the quantum theory, $\hat{A}^0(\mathbf{x}, t)$ satisfies a similar timeindependent constraint

$$m^2 \hat{A}^0(\mathbf{x},t) = \hat{J}^0(\mathbf{x},t) - \nabla \cdot \hat{\mathbf{E}}(\mathbf{x},t).$$
(10)

From the Hilbert space point of view, this is an operatorial identity rather than an equation of motion. Consequently, the commutation relations of the $\hat{A}^0(\mathbf{x}, t)$ field follow from eqs. (9); in particular, $\hat{A}^0(\mathbf{x}, t)$ commutes with the $\hat{\mathbf{E}}(\mathbf{x}, t)$ but does not commute with the $\hat{\mathbf{A}}(\mathbf{x}, t)$.

Finally, the Hamiltonian operator follows from the classical eq. (5), namely

$$\hat{H} = \int d^{3}\mathbf{x} \left\{ \frac{1}{2}\hat{\mathbf{E}}^{2} + \hat{A}_{0} \left(\hat{J}_{0} - \nabla \cdot \hat{\mathbf{E}} \right) - \frac{1}{2}m^{2}\hat{A}_{0}^{2} + \frac{1}{2} \left(\nabla \times \hat{\mathbf{A}} \right)^{2} + \frac{1}{2}m^{2}\hat{\mathbf{A}}^{2} - \hat{\mathbf{J}} \cdot \hat{\mathbf{A}} \right\}
= \int d^{3}\mathbf{x} \left\{ \frac{1}{2}\hat{\mathbf{E}}^{2} + \frac{1}{2m^{2}} \left(\hat{J}_{0} - \nabla \cdot \hat{\mathbf{E}} \right)^{2} + \frac{1}{2} \left(\nabla \times \hat{\mathbf{A}} \right)^{2} + \frac{1}{2}m^{2}\hat{\mathbf{A}}^{2} - \hat{\mathbf{J}} \cdot \hat{\mathbf{A}} \right\}$$
(11)

where the second line follows from the first and eq. (10).

Your task is to calculate the commutators $[\hat{A}_i(\mathbf{x},t), \hat{H}]$ and $[\hat{E}_i(\mathbf{x},t), \hat{H}]$ and write down the Heisenberg equations for the quantum vector fields. Make sure those equations are similar to the Hamilton equations for the classical fields.