1. An operator acting on identical bosons can be described in terms of N-particle wave functions (the first-quantized formalism) or in terms of creation and annihilation operators in the Fock space (the second-quantized formalism). This exercise is about converting the operators from one formalism to another.

The key to this conversion are the single-particle wave functions $\phi_{\alpha}(\mathbf{x})$ of states $|\alpha\rangle$ and the symmetrized N-particle states wave functions

$$
\begin{align*}
\phi_{\alpha \beta \cdots \omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2} \ldots, \mathbf{x}_{N}\right) & =\frac{1}{\sqrt{D}} \sum_{\substack{(\tilde{\alpha}, \tilde{\beta}, \ldots, \tilde{\omega}) \\
\text { distinct permutations } \\
\text { of }(\alpha, \beta, \ldots, \omega)}}^{\text {all permutations }} \begin{array}{l}
\text { of }(\alpha, \beta, \ldots, \omega)
\end{array} \phi_{\tilde{\alpha}}\left(\mathbf{x}_{1}\right) \times \phi_{\tilde{\beta}}\left(\mathbf{x}_{2}\right) \times \cdots \times \phi_{\tilde{\omega}}\left(\mathbf{x}_{N}\right) \\
& =\frac{1}{T \sqrt{D}} \sum_{(\tilde{\alpha}, \tilde{\beta}, \ldots, \tilde{\omega})} \phi_{\tilde{\alpha}}\left(\mathbf{x}_{1}\right) \times \phi_{\tilde{\beta}}\left(\mathbf{x}_{2}\right) \times \cdots \times \phi_{\tilde{\omega}}\left(\mathbf{x}_{N}\right) \tag{1}
\end{align*}
$$

of N-boson states $|\alpha, \beta, \ldots, \omega\rangle$. In eqs. (1), D is the number of distinct (i.e., non-trivial) permutations of single-particle states $(\alpha, \beta, \ldots, \omega)$ and T is the number of trivial permutations. In terms of the occupation numbers n_{γ}

$$
\begin{equation*}
T=\prod_{\gamma} n_{\gamma}!, \quad D=\frac{N!}{T} . \tag{2}
\end{equation*}
$$

(a) Consider a generic N-particle quantum state $\mid N ; \psi)\rangle$ with a totally symmetric wavefunction $\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$. Show that the $(N+1)$-particle state $\left|N+1, \psi^{\prime}\right\rangle=\hat{a}_{\alpha}^{\dagger}|N ; \psi\rangle$ has wave function

$$
\begin{equation*}
\psi^{\prime}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\frac{1}{\sqrt{N+1}} \sum_{i=1}^{N+1} \phi_{\alpha}\left(\mathbf{x}_{i}\right) \times \psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{N+1}\right) \tag{3}
\end{equation*}
$$

Hint: First prove this for wave-functions of the form (1). Then use the fact that states $\left|\alpha_{1}, \ldots, \alpha_{N}\right\rangle$ form a complete basis of the N-boson Hilbert space.
(b) Show that the $(N-1)$-particle state $\left|N-1, \psi^{\prime \prime}\right\rangle=\hat{a}_{\alpha}|N ; \psi\rangle$ has wave-function

$$
\begin{equation*}
\psi^{\prime \prime}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)=\sqrt{N} \int d^{3} \mathbf{x}_{N} \phi_{\alpha}^{*}\left(\mathbf{x}_{N}\right) \times \psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}, \mathbf{x}_{N}\right) \tag{4}
\end{equation*}
$$

Hint: for any $|N-1, \widetilde{\psi}\rangle,\langle N-1, \widetilde{\psi}| \hat{a}_{\alpha}|N, \psi\rangle=\langle N, \psi| \hat{a}_{\alpha}^{\dagger}|N-1, \widetilde{\psi}\rangle^{*}$.
Now consider one-body operators, i.e. additive operators acting on one particle at a time. In the first-quantized formalism they act on N-particle states according to

$$
\begin{equation*}
\hat{A}_{\mathrm{net}}^{(1)}=\sum_{i=1}^{N} \hat{A}_{1}\left(i^{\text {th }} \text { particle }\right) \tag{5}
\end{equation*}
$$

where \hat{A}_{1} is some kind of a one-particle operator (such as momentum $\hat{\mathbf{p}}$, or kinetic energy $\frac{1}{2 m} \hat{\mathbf{p}}^{2}$, or potential $V(\hat{\mathbf{x}})$, etc., etc.). In the second-quantized formalism such operators become

$$
\begin{equation*}
\hat{A}_{\text {net }}^{(2)}=\sum_{\alpha, \beta}\langle\alpha| \hat{A}_{1}|\beta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta} . \tag{6}
\end{equation*}
$$

(c) Verify that the two operators have the same matrix elements between any two N boson states $|N, \psi\rangle$ and $|N, \widetilde{\psi}\rangle,\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(1)}|N, \psi\rangle=\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(2)}|N, \psi\rangle$.
Hint: use $\hat{A}_{1}=\sum_{\alpha, \beta}|\alpha\rangle\langle\alpha| \hat{A}_{1}|\beta\rangle\langle\beta|$.
Finally, consider two-body operators, i.e. additive operators acting on two particles at a time. Given a two-particle operator $\hat{B}_{2}-$ such as $V\left(\hat{\mathbf{x}}_{1}-\hat{\mathbf{x}}_{2}\right)$ - the net B operator acts in the first-quantized formalism according to

$$
\begin{equation*}
\hat{B}_{\text {net }}^{(1)}=\frac{1}{2} \sum_{i \neq j} \hat{B}_{2}\left(i^{\text {th }} \text { and } j^{\text {th }} \text { particles }\right), \tag{7}
\end{equation*}
$$

and in the second-quantized formalism according to

$$
\begin{equation*}
\hat{B}_{\text {net }}^{(2)}=\frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta}(\langle\alpha| \otimes\langle\beta|) \hat{B}_{2}(|\gamma\rangle \otimes|\delta\rangle) \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta} . \tag{8}
\end{equation*}
$$

(d) Again, show these two operators have the same matrix elements between any two N-boson states, $\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(1)}|N, \psi\rangle=\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(2)}|N, \psi\rangle$ for any $\langle N, \widetilde{\psi}|$ and $|N, \psi\rangle$.
2. Next, an exercise in bosonic commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0, \quad\left[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right]=0, \quad\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta} \tag{9}
\end{equation*}
$$

(a) Calculate the commutators $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}\right],\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\delta}\right]$ and $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger} \hat{a}_{\delta}\right]$.
(b) Consider three one-particle operators \hat{A}_{1}, \hat{B}_{1}, and \hat{C}_{1}. Let us define the corresponding second-quantized operators $\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}$, and $\hat{C}_{\text {net }}^{(2)}$ according to eq. (6).
Show that if $\hat{C}_{1}=\left[\hat{A}_{1}, \hat{B}_{1}\right]$ then $\hat{C}_{\text {net }}^{(2)}=\left[\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}\right]$.
(c) Next, calculate the commutator $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta}, \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu}\right]$.
(d) Finally, let \hat{A}_{1} be a one-particle operator, let \hat{B}_{2} and \hat{C}_{2} be two-body operators, and let $\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}$, and $\hat{C}_{\text {net }}^{(2)}$ be the corresponding second-quantized operators according to eqs. (6) and (8).
Show that if $\hat{C}_{2}=\left[\left(\hat{A}_{1}\left(1^{\text {st }}\right)+\hat{A}_{1}\left(2^{\text {nd }}\right)\right), \hat{B}_{2}\right]$ then $\hat{C}_{\text {net }}^{(2)}=\left[\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}\right]$.
3. The rest of this homework is about coherent states of harmonic oscillators and free quantum fields. Let us start with a harmonic oscillator $\hat{H}=\hbar \omega \hat{a}^{\dagger} \hat{a}$.
(a) For any complex number ξ we define a coherent state $|\xi\rangle \stackrel{\text { def }}{=} \exp \left(\xi \hat{a}^{\dagger}-\xi^{*} \hat{a}\right)|0\rangle$. Show that

$$
\begin{equation*}
|\xi\rangle=e^{-|\xi|^{2} / 2} e^{\xi \hat{a}^{\dagger}}|0\rangle \quad \text { and } \quad \hat{a}|\xi\rangle=\xi|\xi\rangle \tag{10}
\end{equation*}
$$

(b) Use $\hat{a}|\xi\rangle=\xi|\xi\rangle$ to show that the (coordinate-space) wave function of a coherent state $|\xi\rangle$ is a gaussian wave packet of the same width as the ground state $|0\rangle$.
(c) Use use $\hat{a}|\xi\rangle=\xi|\xi\rangle$ and $\langle\xi| \hat{a}^{\dagger}=\xi^{*}\langle\xi|$ to calculate the uncertainties Δq and Δp in a coherent state and verify their minimality: $\Delta q \Delta p=\frac{1}{2} \hbar$. Also, verify $\delta n=\sqrt{\bar{n}}$ where $\bar{n} \xlongequal{\text { def }}\langle\hat{n}\rangle=|\xi|^{2}$.
(d) Show that the (coordinate-space) wave function of a coherent state $|\xi\rangle$ is a gaussian wave packet of the same width as the ground state $|0\rangle$.
(e) Consider time-dependent coherent states $|\xi(t)\rangle$. Show that for $\xi(t)=\xi_{0} e^{-i \omega t}$, the state $|\xi(t)\rangle$ satisfies the time-dependent Schrödinger equation $i \hbar \frac{d}{d t}|\xi(t)\rangle=\hat{H}|\xi(t)\rangle$.
(f) The coherent states are not quite orthogonal to each other.

Calculate their overlap $\langle\eta \mid \xi\rangle$.
Now consider coherent states of multi-oscillator systems and hence quantum fields. In particular, let us focus on the creation and annihilation fields $\hat{\Psi}^{\dagger}(\mathbf{x})$ and $\hat{\Psi}(\mathbf{x})$ for nonrelativistic spinless bosons.
(g) Generalize (a) and construct coherent states $|\Phi\rangle$ which satisfy

$$
\begin{equation*}
\hat{\Psi}(\mathbf{x})|\Phi\rangle=\Phi(\mathbf{x})|\Phi\rangle \tag{11}
\end{equation*}
$$

for any given classical complex field $\Phi(\mathbf{x})$.
(h) Show that for any such coherent state, $\Delta N=\sqrt{\bar{N}}$ where

$$
\begin{equation*}
\bar{N} \stackrel{\text { def }}{=}\langle\Phi| \hat{N}|\Phi\rangle=\int d \mathbf{x}|\Phi(\mathbf{x})|^{2} \tag{12}
\end{equation*}
$$

(i) Let

$$
\hat{H}=\int d \mathbf{x}\left(\frac{\hbar^{2}}{2 M} \nabla \hat{\Psi}^{\dagger}(\mathbf{x}) \cdot \nabla \hat{\Psi}(\mathbf{x})+V(\mathbf{x}) \times \hat{\Psi}^{\dagger}(\mathbf{x}) \hat{\Psi}(\mathbf{x})\right)
$$

and show that for any classical field configuration $\Phi(\mathbf{x}, t)$ that satisfies the classical field equation

$$
i \hbar \frac{\partial}{\partial t} \Phi(\mathbf{x}, t)=\left(-\frac{\hbar^{2}}{2 M} \nabla^{2}+V(\mathbf{x})\right) \Phi(\mathbf{x}, t)
$$

the time-dependent coherent state $|\Phi\rangle$ satisfies the true Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\Phi\rangle=\hat{H}|\Phi\rangle \tag{13}
\end{equation*}
$$

(j) Finally, show that the quantum overlap $\left|\left\langle\Phi_{1} \mid \Phi_{2}\right\rangle\right|^{2}$ between two different coherent states is exponentially small for any macroscopic difference $\delta \Phi(\mathbf{x})=\Phi_{1}(\mathbf{x})-\Phi_{2}(\mathbf{x})$ between the two field configurations.

