PHY-396 K. Problem set #3. Due October 2, 2008.

. An operator acting on identical bosons can be described in terms of N-particle wave
functions (the first-quantized formalism) or in terms of creation and annihilation operators
in the Fock space (the second-quantized formalism). This exercise is about converting the

operators from one formalism to another.

The key to this conversion are the single-particle wave functions ¢, (x) of states |a) and

the symmetrized N-particle states wave functions

distinct permutations

1 of (a,B,...,w)
Qbaﬁ...w(Xl,XQ ...,XN) = \/_E Z qb&(Xl) X ¢B(X2) X X qﬁ@(XN)
(&,B,...,0) (1)
all permutations
1 of (a,B,...,.w)
= VD Z ~ Pa(X1) X P5(x2) X - -+ X Pp(XN)
(&,8,...,.0)
of N-boson states |, 3, ...,w). In egs. (1), D is the number of distinct (i.e., non-trivial)
permutations of single-particle states (a, 3,...,w) and T' is the number of trivial permu-

tations. In terms of the occupation numbers n,,

N!
T =1]n', D= (2)
Y

(a) Consider a generic N-particle quantum state |N; 1)) with a totally symmetric wave-
function W(x1,...,xy). Show that the (N +1)-particle state [N + 1,¢') = ag |N; )

has wave function

N+1

! Zgba(xi) X ¢(X1,...,XZ‘,...,XN+1). (3)
i=1

Y(x1,....xN) = INTI

Hint: First prove this for wave-functions of the form (1). Then use the fact that

states |, ..., an) form a complete basis of the N-boson Hilbert space.



(b) Show that the (N — 1)-particle state |[N — 1,9") = a4 |N; %) has wave-function
77/}//(}(1, c 7XN—1) = \/N dSXN gbZ(XN) X @Z)(Xl, . ,XN_l,XN). (4)

Hint: for any [N —1,4), (N — 1, 9| do [N, ¢) = (N, o] ak [N — 1,¢)".

Now consider one-body operators, i.e. additive operators acting on one particle at a time.

In the first-quantized formalism they act on N—particle states according to
N
Asa)t = ZAl(ith particle) (5)
i=1

where A; is some kind of a one-particle operator (such as momentum p, or kinetic energy
ﬁf)z, or potential V(x), etc., etc.). In the second-quantized formalism such operators

become

AQ =Y (al A1) dfag. (6)
a75

(c) Verify that the two operators have the same matrix elements between any two N-
- ~ (1 =2 (2
boson states [N, ) and |N, ), (N, 9] A%, [N, ¢) = (N, 9| A% [N, ).
Hint: use A; = Y apla) (@l A1 18) (8.
Finally, consider two-body operators, i.e. additive operators acting on two particles at a

time. Given a two-particle operator By — such as V(%1 —x2) — the net B operator acts

in the first-quantized formalism according to

B&% = %Z By (i'" and 7" particles), (7)
i#]
and in the second-quantized formalism according to

BS = 1Y (ol @ (B)Bay) ©10)) ahalaas (®)
a,B,7,0

(d) Again, show these two operators have the same matrix elements between any two

N-boson states, (N, | AL [N, ¢) = (N, | A®) [N, %) for any (N, | and | N, ¥).



2. Next, an exercise in bosonic commutation relations
(g, ag) = 0, [al,al] = 0, [ag,al] = dap. (9)

(a) Calculate the commutators [&L&B,aL], [&L&B,dé] and [d&&ﬁ,dgdd].

b) Consider three one-particle operators Al, Bl, and C. Let us define the correspondin
g
second-quantized operators A% B@ and 6(2)

net’ ~“net’ net

according to eq. (6).
Show that if C} = [1211, Bl] then CA‘I(IQ = [Aga, Br@c}
(c) Next, calculate the commutator [dlzd;dvd 5 &Ldy].
(d) Finally, let Aq be a one-particle operator, let By and Cs be two-body operators, and

let A(Q) B(Z) and C'(Z)

net> net» net

to egs. (6) and (8).

be the corresponding second-quantized operators according

Show that if Cy = [(Al(ﬁt) + A1<2nd)> , Bz] then @) — [ i 5O

net — net> net]'

3. The rest of this homework is about coherent states of harmonic oscillators and free quan-

tum fields. Let us start with a harmonic oscillator H = hwa'a.

(a) For any complex number £ we define a coherent state |) dof exp (de — 5*&) |0). Show
that

€) = P28 0y and ale) = ¢le). (10)

(b) Use a|&) = £|¢) to show that the (coordinate-space) wave function of a coherent

state |£) is a gaussian wave packet of the same width as the ground state |0).

(c) Useuse a|€) = &|€) and (¢]al = €* (€] to calculate the uncertainties Aq and Ap in a
coherent state and verify their minimality: AgAp = %h. Also, verify on = v/n where
_ def /. 2
n= (n) = ¢

(d) Show that the (coordinate-space) wave function of a coherent state |€) is a gaussian

wave packet of the same width as the ground state |0).



(e) Consider time-dependent coherent states |£(t)). Show that for £(t) = &e™ ™, the
state |£(t)) satisfies the time-dependent Schrodinger equation ih% £(t)) = H |E(t)).

(f) The coherent states are not quite orthogonal to each other.

Calculate their overlap (n|€).

Now consider coherent states of multi-oscillator systems and hence quantum fields. In
particular, let us focus on the creation and annihilation fields ¥f(x) and ¥(x) for non-

relativistic spinless bosons.

(g) Generalize (a) and construct coherent states |®) which satisfy
V(x)[@) = 2(x)[P) (11)

for any given classical complex field ®(x).

(h) Show that for any such coherent state, AN = VN where

N | N o) :/dx|<1>(x)|2. (12)

(i) Let

. B2 . . . .
H = [dx <WV\IIT(X)-V\I’(X) + V(x) x \IIT(X)\II(X))

and show that for any classical field configuration ®(x,t) that satisfies the classical

field equation

2
ih%@(x,t) _ (—;WV2+V(X)> (. 1).

the time-dependent coherent state |®) satisfies the true Schrodinger equation
o le) = ) (13
ih— = :
ot

(j) Finally, show that the quantum overlap | (®1|®2)|? between two different coherent
states is exponentially small for any macroscopic difference §®(x) = ®;(x) — Pa(x)

between the two field configurations.



