
PHY–396 K. Problem set #5. Due October 9, 2008.

1. Let’s start with the Bogolyubov transform. Given some kind of annihilation and creation

operators â
k
and â†

k
which satisfy the bosonic commutation relations

[â
k
, â

k′] = [â†
k
, â†

k′] = 0, [â
k
, â†

k′] = δk,k′ , (1)

we define new operators b̂
k
and b̂†

k
according to

b̂
k

= cosh(tk)âk + sinh(tk)â
†
−k

, b̂†
k

= cosh(tk)â
†
k

+ sinh(tk)â−k
(2)

for some arbitrary real parameters tk = t−k.

(a) Show that the b̂
k
and the b̂†

k
satisfy the same bosonic commutation relations as the â

k

and the â†
k
.

The Bogolyubov transform — replacing the ‘original’ creation and annihilation operators â†
k

and â
k
with the ‘transformed’ operators b̂†

k
and b̂

k
— is useful for diagonalizing quadratic

Hamiltonians of the form

Ĥ =
∑

k

Akâ
†
k
â
k

+ 1
2

∑

k

Bk

(
â
k
â−k

+ â†
k
â†−k

)
(3)

where for all momenta k, Ak = A−k, Bk = B−k, and Ak > |Bk|.

(b) Show that for a suitable choice of the tk parameters,

Ĥ =
∑

k

ωkb̂
†
k
b̂
k

+ const where ωk =
√

A2
k
−B2

k
. (4)

(c) Show that b̂†
k
b̂
k
− b̂†−k

b̂−k
= â†

k
â
k
− â†−k

â−k
and therefore

P̂ ≡
∑

k

k× â†
k
â
k

=
∑

k

k× b̂†
k
b̂
k
. (5)
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2. Now consider the quantum field theory of superfluid helium. In class we have shifted the

quantum fields by Ψ̂(x) =
√
n + δΨ̂(x), expanded the Hamiltonian in powers of the δΨ̂(x)

and δΨ̂†(x) as Ĥ − µN̂ = (E − µN) + Ĥ2 + Ĥ3+4 where Ĥ2 describes free quasiparticles

and Ĥ3+4 their interactions, wrote Ĥ2 in terms of â
k
and â†

k
, and finally used a Bogolyubov

transform (4) to obtain

Ĥ2 =
∑

k

ωkb̂
†
k
b̂
k

+ const (6)

where

ωk = |k| ×
√

λn

M
+

k2

4M2
. (7)

All that was done for a zero-range force between two helium atoms, V2(x−y) = λδ(3)(x−y).

Now, let us allow for a more general model of liquid helium in which the two-body forces

between the atoms have finite range. In QFT terms, this gives us a non-local free-energy

operator

F̂ ≡ Ĥ − µN̂ =

∫
d3x

(
1

2M
∇Ψ̂†(x) · ∇Ψ̂(x) − µΨ̂†(x)Ψ̂(x)

)

+ 1
2

∫∫
d3x d3y V2(x− y)× Ψ̂†(x)Ψ̂†(y)Ψ̂(x)Ψ̂(y).

(8)

(a) Find the density n = N/L3 which minimizes the free energy, shift the quantum fields

by
〈
Ψ̂
〉
=

√
n, expand F̂ in powers of the shifted fields as F̂ = (E−µN) + Ĥ2+ Ĥ3+4,

and show that

Ĥ2 =

∫
d3x

1

2M
∇Ψ̂†(x) · ∇Ψ̂(x)

+
n

2

∫∫
d3x d3y V2(x− y)×

(
Ψ̂(x)Ψ̂(y) + Ψ̂†(x)Ψ̂†(y) + 2Ψ̂†(x)Ψ̂(y)

)
.

(9)

(b) As a Hamiltonian, Ĥ2 describes free quasiparticles. To make this manifest, rewrite (9)

in terms of the k–modes of the shifted fields, then perform a Bogolyubov transform to
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bring it to the form (6) with frequencies

ωk = |k| ×
√

n

M
W (k) +

k2

4M2
where W (k) =

∫
d3x eikxV2(x). (10)

In helium, W (k) decreases with momentum k so rapidly that the dispersion relation (10)

has a dip,

k

ω(k)

(11)

For small momenta, ω ≈ cs|k| and the quasiparticles are phonons. For large momenta,

ω ≈ k2/2M and the quasiparticles are helium atoms knocked out of Bose condensate.

And for intermediate momenta, the quasiparticles interpolate between the phonons and the

atoms. In the region where the curve ω(k) dips down, the quasiparticles are called rotons;

the historical reasons for this name turned out to be wrong, but the name stuck.

To see how this works, note that the quasiparticles are created by the b̂†
k
operators and

annihilated by the b̂
k
. Thus, the quasiparticle vacuum is not the no-atoms state |0〉 but the

ground state of the Hamiltonian (6), which is the unique state |Ω〉 annihilated by all the b̂
k

operators, b̂
k
|Ω〉 = 0. The excited states have some quasiparticles on top of this |Ω〉, i.e.

∣∣NQP : k1, . . . ,kn
〉
∝ b̂†

kn

· · · b̂†
k1

|Ω〉. Note that according to eq. (5), the quasiparticles have

definite mechanical momenta. On the other hand, they do not have well-defined atomic

numbers because the phase symmetry generated by the N̂ is spontaneously broken.

(c) Check that for large momenta b̂†
k
≈ â†

k
and therefore the quasi-particle is approximately

an atom, while for small momenta b̂†
k
≈ (coeff)×(â†

k
+â

k
) and therefore the quasiparticle

is approximately a phonon.
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Finally, let us consider a moving superfluid. For simplicity, we assume uniform motion with

velocity v. As discussed in class, this motion is described by

Φ(x) ≡
〈
Ψ̂(x)

〉
=

√
n× exp(iMv · x), (12)

so let’s define the shifted quantum fields according to

Ψ̂(x) = eiMvx ×
(√

n + δΨ̂(x)
)
, Ψ̂†(x) = e−iMvx ×

(√
n + δΨ̂†(x)

)
. (13)

Physically, the e±iMvx factors multiplying the shifted fields mean that the latter describe

fluctuations in the frame of the moving superfluid rather than in the lab frame.

(d) Write the free-energy operator of the moving superfluid in terms of the shifted fields

and show that

Ĥ − µ′N̂ = const + Ĥ2 + v · P̂ + Ĥ3+4 (14)

where Ĥ2 and Ĥ3+4 are exactly as for the superfluid at rest, and the momentum operator

is exactly as in eq. (5). Note that the chemical potential here includes the kinetic energy

of the uniform motion, µ′ = µ+ 1
2Mv2.

As far as the quasiparticles in a moving superfluid are concerned, the free part of their

Hamiltonian comprises all the quadratic terms in the operator (14), thus

Ĥ ′
2 = Ĥ2 + v · P̂ =

∑

k

(ωk + v · k) b̂†
k
b̂
k
. (15)

which acts as a Hamiltonian of free quasiparticles As discussed in class, any mode k with a

negative coefficient of the b̂†
k
b̂
k
operator would have a spontaneous buildup of quasiparticles,

which would in turn lead to dissipation of the fluid’s motion and hence loss of superfluidity.

However, for the dispersion relation (10), all the coefficients (ωk+v ·k) are positive as long

as the fluid flows slower than some critical speed

vc = min
k

ωk

|k| > 0, (16)

For |v| < vc there is no spontaneous buildup of quasiparticles and hence no dissipation of

the superflow. This is why the superfluid flows without resistance.
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3. The last exercise is about relativistic theories. When an exact symmetry of a quantum field

theory is spontaneously broken down, it gives rise to exactly massless Goldstone bosons. But

when the spontaneously broken symmetry was only approximate to begin with, the would-be

Goldstone bosons are no longer exactly massless but only relatively light. The best-known

examples of such pseudo-Goldstone bosons are the pi-mesons π± and π0, which are indeed

much lighter then other hadrons. The Quantum ChromoDynamics theory (QCD) of strong

interactions has an approximate chiral isospin symmetry SU(2)L×SU(2)R ∼= Spin(4). This

symmetry would be exact if the two lightest quark flavors u and d were massless; in real life,

the masses mu and md are small but non quite zero, and the symmetry is only approximate.

Somehow (and people are still arguing how), the chiral isospin symmetry is spontaneously

broken down to the ordinary isospin symmetry SU(2) ∼= Spin(3), and the 3 generators of

the broken Spin(4)/Spin(3) give rise to 3 (pseudo) Goldstone bosons π± and π0.

QCD is a rather complicated theory, so it is often convenient to describe the physics of the

spontaneously broken chiral symmetry in terms of a simpler theory with similar symmetries.

For example, the linear sigma model is a theory of 4 real scalar fields, an isosinglet σ(x) and

an isotriplet π
˜
(x) comprising π1(x), π2(x) and π3(x) (or equivalently, π0(x) ≡ π3(x) and

π±(x) ≡
(
π1(x)± iπ2(x)

)
/
√
2). The Lagrangian

L = 1
2(∂µσ)

2 + 1
2(∂µπ˜

)2 − λ

8

(
σ2 + π

˜
2 − f2

)2
+ βλf2 × σ (17)

is invariant under the SO(4) rotations of the four fields, except for the last term which we

treat as a perturbation. In class we saw that for β = 0 this theory has SO(4) spontaneously

broken to SO(3) and hence 3 massless Goldstone bosons — the pions. In this exercise, we

let β > 0 but β ≪ f to show how this leads to pions being massive but light.

(a) Show that the scalar potential of the linear sigma model with β > 0 has a unique

minimum at

〈π
˜
〉 = 0 and 〈σ〉 = f + β + O(β2/f). (18)

(b) Expand the fields around this minimum and show that the pions are light while the σ

particle is much heavier. Specifically, M2
π ≈ λfβ while M2

σ ≈ λf(f + β) ≈ λf2 ≫ M2
π .
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