
PHY–396 K. Problem set #6. Due October 16, 2007.

Note: Continuous symmetries of any field theory form two separate groups: (1) the spacetime

symmetries (Lorentz and translations); (2) the internal symmetries, which mix the fields

with each other but do not move them in spacetime. In this homework we focus on the

internal symmetries only.

1. Consider a theory of N complex scalar fields φa(x), a = 1, 2, . . . , N and a vector field

Aµ(x). The Lagrangian is

L = −1

4
FµνF

µν +
∑
a

Dµφ∗aDµφa −
λ

4

(∑
a

|φa|2
)2

− m2
∑
a

|φa|2 (1)

where Dµφa(x) = ∂µφa(x) + ieAµ(x)φa(x); note all the φa have the same charge e.

(a) Show that the internal symmetry group of this theory is G = U(1)local × SU(N)global.

From now on, m2 < 0 and the scalar potential of the theory is minimized for φ 6= 0. Thanks

to the SU(N) symmetry, such minima form a sphere in CN = R2N , and without loss of

generality we shall focus on the “North pole” of this sphere, i.e. a point where φi = 0 for

i = 1, . . . , (N − 1) while φN is real and positive.

(b) Show that symmetries preserving this minimum form subgroup [SU(N−1)×U(1)]global

of G.

(c) Use Nambu–Goldstone theorem to determine how many massless particles should the

theory have and what are their quantum numbers with respect to the un-broken sym-

metries. Mind the Higgs mechanism for the local symmetries.

(d) And now let’s derive the actual particle spectrum of the theory. Go to the unitary

gauge for the local U(1) symmetry, shift all fields by their vacuum expectation values,

and expand the Lagrangian (1) in terms of the shifted fields. Use the quadratic part

of this expansion to identify particle species and their masses.

(e) Focus on the the massless particles obtained in part (d) and make sure their quantum

numbers agree with part (c).
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2. Here is a more complicated problem on spontaneous symmetry breaking. Consider an

N × N matrix Φ(x) of complex scalar fields Φi
j(x), i, j = 1, . . . , N . In matrix notations,

the Lagrangian is

L = tr
(
∂µΦ† ∂µΦ

)
− V (Φ†Φ) (2)

where the potential is

V =
α

2
tr
(

Φ†ΦΦ†Φ
)

+
β

2

(
tr
(

Φ†Φ
))2

+ m2 tr
(

Φ†Φ
)
. (3)

(a) Show that this theory has global symmetry group G = SU(N)L × SU(N)R × U(1)

acting as

Φ(x) → eiθULΦ(x)U †R, UL, UR ∈ SU(N). (4)

(?) Optional exercise, only for experts in group theory:

Show that the theory has no other continuous symmetries besides G and Poincare

(Lorentz and translations of spacetime).

From now on, we take α, β > 0 but m2 < 0. In this regime, V is minimized for non-zero

vacuum expectation values 〈Φ〉 6= 0 of the scalar fields.

(b) Let (κ1, . . . , κN ) be eigenvalues of the hermitian matrix Φ†Φ. Express the potential (3)

in terms of these eigenvalues and show that the minimum lies at

κ1 = κ2 = · · · = κN = C2 =
−m2

α +Nβ
> 0. (5)

In terms of the matrix Φ, eq. (5) means Φ = C × a unitary matrix. All such minima are

related by symmetries (4) to Ψ = C × the unit matrix, so without loss of generality we

may assume that the vacuum lies at

〈Φ〉 = C × 1N×N i. e.
〈
Φi
j

〉
= C × δij . (6)

(c) Show that in this vacuum, the symmetry group of the theory is spontaneously broken

down to SU(N); in terms of eq. (4), the unbroken symmetries have UL = UR ∈ SU(N)

and θ = 0.
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Let’s expand the theory around the vacuum (6). For convenience, let’s also decompose the

complex matrix Φ into its hermitian and anti-hermitian parts,

Φ(x) = C × 1N×N +
ϕ1(x) + i ϕ2(x)√

2
where ϕ†1 ≡ ϕ1 and ϕ†2 ≡ ϕ2 . (7)

(d) Expand the Lagrangian in powers of ϕ1 and ϕ2 and use the quadratic part L2 to

determine the particle spectrum of the theory.

(e) Check the quantum numbers of the massless particles and verify that they agree with

the Nambu–Goldstone theorem for the spontaneously broken symmetries of the theory.

3. Now let’s gauge the SU(N)L×SU(N)R×U(1) symmetry of the previous problem. Natu-

rally, this requires gauge fields Bµ(x) and matrix-valued Lµ(x) and Rµ(x). In components,

Lµ(x) =
∑

a
1
2λ

a ×Laµ(x) and Rµ(x) =
∑

a
1
2λ

a ×Raµ(x) where a = 1, . . . , (N2 − 1) and λa

are the Gell–Mann matrices of SU(N). The Lagrangian now is

L = −1
4BµνB

µν − 1
2 tr (LµνL

µν) − 1
2 tr (RµνR

µν) + tr
(
DµΦ†DµΦ

)
− V (Φ†Φ) (8)

where the scalar potential V is as in eq. (3), and

Bµν = ∂µBν − ∂νBµ ,

Lµν = ∂µLν − ∂νLµ + ig[Lµ, Lν ],

Rµν = ∂µRν − ∂νRµ + ig[Rµ, Rν ],

DµΦ = ∂µΦ + ig′BµΦ + igLµΦ − igΦRµ ,

DµΦ† = (DµΦ)† = ∂µΦ† − ig′BµΦ† + igRµΦ† − igΦ†Lµ .

(9)

For simplicity, I assume equal gauge couplings gL = gR = g for the two SU(N) factors of

the gauge group, but the abelian coupling g′ is different.

As in the previous problem, we take α, β > 0 but m2 < 0 so the scalar’s vacuum expectation

values 〈Φ〉 are as in eq. (6), and the SU(N)L×SU(N)R×U(1) gauge symmetry is broken

down to SU(N).
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(a) Write down the mass matrix for the vector fields. Show that Bµ and Xa
µ = 1√

2
(Laµ−Raµ)

vectors become massive while V a
µ = 1√

2
(Laµ +Raµ) remain massless.

(b) Find the effective Lagrangian for the massless vector fields V a
µ (x) by freezing all the

other fields, i.e. setting Φ(x) ≡ 〈Φ〉, Bµ(x) ≡ 0 and Xa
µ(x) ≡ 0. Show that this La-

grangian describes a Yang–Mills theory with gauge group SU(N)V and gauge coupling

gV = g/
√

2.

(?) Optional exercise:

Rewrite the Lagrangian (8) in terms of fields of definite mass — Vµ, Xµ, Bµ and δΨ

— and their derivatives that are covariant with respect to the unbroken SU(N)V . For

simplicity, fix the unitary gauge for the broken symmetries by demanding Φ† ≡ Ψ, or

in terms of eq. (7), freeze ϕ2 ≡ 0.

4. Finally, a problem on a different subject. Quantum mechanics of a fixed number of rel-

ativistic particles does not work (except as an approximation) because of problems with

relativistic causality. Indeed, consider a single free relativistic spinless particle with Hamil-

tonian

Ĥ = +

√
M2 + P̂2 (10)

(in the c = h̄ = 1 units). In the coordinate picture, this Hamiltonian is a horrible integro-

differential operator, but that’s only a technical problem. The real problem concerns the

time evolution kernel

U(x− y; t) = 〈x, t|y, t0 = 0〉Heisenberg
picture = 〈x| exp(−itĤ) |y〉Schroedingerpicture . (11)

(a) Show that

U(x− y; t) =
−i

4π2 r

∫
dk k exp

(
irk − itω(k)

)
, (12)

where r = |x− y| and ω(k) =
√
M2 + k2.
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(b) Take the limit t → ∞, r → ∞, with fixed ratio r/t; let’s stay inside the future light

cone, so (r/t) < 1. Show that in this limit, the evolution kernel becomes

U(x− y; t) ≈ (−iM)3/2

4π3/2
t

(t2 − r2)5/4
× exp(−iM

√
t2 − r2). (13)

Hint: Use the saddle point method to evaluate the integral (12). If you are not familiar

with this method, see the mathematical supplement.

(c) Finally, take a similar limit but go outside the light cone, thus fixed (r/t) > 1 while

R, t→∞. Show that in this limit, the kernel becomes

U(x− y; t) ≈ iM3/2

4π3/2
t

(r2 − t2)5/4
× exp(−M

√
r2 − t2). (14)

This formula shows that the kernel diminishes exponentially outside the light cone, but

it does not vanish! Thus, given a particle localized at point y at the time t0 = 0, after

time t > 0, its wave function is mostly limited to the future light cone r < t, but there is

an exponential tail outside the light cone. In other words, the probability of superluminal

motion is exponentially small but non-zero.

Obviously, such superluminal propagation cannot be allowed in a consistently relativistic

theory. And that’s why relativistic quantum mechanics of a single particle is inconsistent.

Likewise, relativistic quantum mechanics of any fixed number of particles does not work,

except as an approximation.

In the quantum field theory, this paradox is resolved by allowing for creation and annihi-

lation of particles. Quantum field operators acting at points x and y outside each others’

lightcones can either create a particle at x and then annihilate it at y, or else annihilate it

at y and then create it at x. I will show in class that the two effects precisely cancel each

other, so altogether there is no propagation outside the light cone. That’s how relativistic

QFT is perfectly causal while the relativistic QM is not.
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http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/saddle.pdf

