
PHY–396 K. Problem set #7. Due October 23, 2008.

1. First, finish the previous homework set and do problem #4.

To evaluate some integrals in that problem, you need the saddle point method. If you are

not familiar with this method — or any of the related methods for approximating integrals

of the form
∫
dx f(x)× exp(Ag(x)) for A→∞ — then read my mathematical supplement

on the subject.

2. The second problem is about quantum massive vector field Aµ(x) and its expansion into

creation and annihilation operators. The classical massive vector fields has appeared in two

earlier homeworks sets: in set #1 we derived the equations of motions from the Lagrangian,

and in set #3 we developed the Hamiltonian formalism. The canonical quantization of

that formalism is completely straightforward: The 3–vector field A(x) and its canonical

conjugate −E(x) become quantum fields obeying equal-time commutation relations

[Âi(x), Âj(y)] = 0, [Êi(x), Êj(y)] = 0, [Âi(x), Êj(y)] = −iδijδ(3)(x− y) (1)

(in h̄ = 1, c = 1 units), the time-independent equation of motion for the A0 field becomes

an operatorial identity

Â0(x) = −∇ · Ê(x)

m2
, (2)

and the Hamiltonian operator

Ĥ =

∫
d3x

(
1
2Ê

2 +
(∇ · Ê)2

2m2
+ 1

2(∇× Â)2 + 1
2m

2Â2

)
. (3)

follows from the classical Hamiltonian. In this exercise, we assume free fields not coupled

to any currents; otherwise, there would be additional terms involving Jµ(x) in eqs. (2)

and (3).
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In general, a QFT has a creation â†k,λ and an annihilation operator âk,λ for each plane

wave with momentum k and polarization λ. The massive vector fields have 3 independent

polarizations corresponding to orthogonal 3–vectors. One may use any basis of 3 such

vectors eλ(k), and it’s often convenient to make them k–dependent and complex; in the

complex case, orthogonality and the unit length mean

eλ(k) · e∗λ′(k) = δλ,λ′ . (4)

Of particular convenience is the helicity basis of eigenvectors of the vector product ik × ,

namely

ik× eλ(k) = λ|k|eλ(k), λ = −1, 0,+1. (5)

By convention, the phases of the complex helicity eigenvectors are chosen such that

e0(k) =
k

|k|
, e∗λ(k) = (−1)λe−λ(k), eλ(−k) = −e∗λ(+k). (6)

As a first step towards constructing the âk,λ and â†k,λ operators, we Fourier transform

the vector fields Â(x) and Ê(x) and then decompose the vectors Âk and Êk into helicity

components,

Â(x) =

∫
d3k

(2π)3

∑
λ

eikxeλ(k) Âk,λ , Âk,λ =

∫
d3x e−ikxe∗λ(k) · Â(x),

Ê(x) =

∫
d3k

(2π)3

∑
λ

eikxeλ(k) Êk,λ , Êk,λ =

∫
d3x e−ikxe∗λ(k) · Ê(x).

(7)

(a) Show that Â†k,λ = −Â−k,λ, Ê†k,λ = −Ê−k,λ, and derive the equal-time commutation

relations for the Âk,λ and Êk,λ operators.

(b) Show that

Ĥ =

∫
d3k

(2π)3

∑
λ

(
Ck,λ

2
Ê†k,λÊk,λ +

ω2
k

2Ck,λ
Â†k,λÂk,λ

)
(8)

where ωk =
√
k2 +m2 and Ck,λ = 1 + δλ,0(k

2/m2).
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(c) Define creation and annihilation operators according to

âk,λ =
ωkÂk,λ − iCk,λÊk,λ√

Ck,λ
, â†k,λ =

ωkÂ
†
k,λ + iCk,λÊ

†
k,λ√

Ck,λ
, (9)

and verify that they satisfy equal-time bosonic commutation relations (relativistically

normalized).

(d) Show that

Ĥ =

∫
d3k

(2π)3 2ωk

∑
λ

ωk â
†
k,λâk,λ + const. (10)

(e) Next, consider the time dependence of the free vector field. Show that

Â(x, t) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e−ikxeλ(k) âk,λ(0) + e+ikxe∗λ(k) â†k,λ(0)

)
k0=+ωk

.

(11)

(f) Write down a similar formula for the Â0(x, t) (use eq. (2)). Together with the previous

result, you should get

Âµ(x) =

∫
d3k

(2π)32ωk

∑
λ

(
e−ikxfµ(k, λ) âk,λ(0) + e+ikxf∗µ(k, λ) â†k,λ(0)

)
k0=+ωk

(12)

where the 4–vectors fµ(k, λ) obtain by Lorentz boosting of purely-spatial polarization

vectors eλ(k) into the moving particle’s frame. Specifically,

fµ(k, λ) =


(
0, eλ(k)

)
for λ = ±1,(

|k|
m ,

ωk

m
k
|k|

)
for λ = 0,

(13)

and they satisfy

kµf
µ
k,λ = 0, fµk,λ

(
f∗k,λ′

)
µ

= −δλ,λ′ . (14)

(g) Finally, verify that the quantum vector field (12) satisfies the free equations of motion

∂µÂ
µ(x) = 0 and (∂2 + m2)Âµ(x) = 0; moreover, each mode in the expansion (12)

satisfies the equations of motions without any help from the other modes.
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3. The last problem concerns the Feynman propagator for the massive vector field.

(a) First, a lemma: Show that

∑
λ

fµ(k, λ)fν∗(k, λ) = −gµν +
kµkν

m2
. (15)

(b) Next, calculate the “vacuum sandwich” of two vector fields and show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y).

(16)

(c) And now, the Feynman propagator: Show that

GµνF ≡ 〈0|T∗Âµ(x)Âν(y) |0〉 =

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x− y)

=

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
ie−ik(x−y)

k2 −m2 + i0

(17)

where

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y), (18)

is the modified time-ordered product of the vector fields. The purpose of this modifi-

cation
?

is to absorb the δ(4)(x− y) stemming from the ∂0∂0GF (x− y).

(d) Finally, write the classical action for the free vector field as

S = 1
2

∫
d4xAµ(x)DµνAν(x) (19)

where Dµν is a differential operator and show that the Feynman propagator (17) is a

Green’s function of this operator,

Dµνx GFνλ = +iδµλδ
(4)(x− y). (20)

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
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