
PHY–396 K. Problem set #8. Due October 30, 2008.

1. The first problem concerns quantizing the massless EM field Aµ(x). In the previous home-

work set, we had massive vector fields satisfying equal-times commutation relations

[Âi(x), Âj(y)] = 0, [Êi(x), Êj(y)] = 0, [Âi(x), Êj(y)] = −iδijδ(3)(x− y). (1)

But the massless electric field satisfies the Gauss Law

∇ · Ê(x) = ρ(x) → 0 for free fields. (2)

This equation is time-independent, so in the quantum theory it becomes an operatorial

identity. Consequently, ∇ · Ê(x) must commute with all the EM fields — including all the

Âi(y) — and that contradicts the canonical commutation relations (1).

We need to resolve this contradiction, and at the same time make sure that gauge transforms

do not affect the commutations relations. The simplest way to solve both problems is to fix the

Coulomb gauge in which

∇ · Â(x, t) ≡ 0. (3)

This makes both Â and Ê fields transverse, or in terms of momenta and helicities,

Âk,λ=0 ≡ Êk,λ=0 ≡ 0 (4)

and hence

Â(x) =

∫
d3k

(2π)3

only∑
λ=±1

eikxeλ(k) Âk,λ , Ê(x) =

∫
d3k

(2π)3

only∑
λ=±1

eikxeλ(k) Êk,λ . (5)

The transverse modes have canonical commutation relations

[Âk,λ, Âk′,λ′ ] = 0, [Êk,λ, Êk′,λ′ ] = 0, [Âk,λ, Êk′,λ′ ] = iδλ,λ′(2π)3δ(3)(k + k′) (6)

for λ, λ′ = ±1 only, while the longitudinal modes are absent altogether. Finally, the Â0 field
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satisfies ∇2Â0 = −∇ · Ê and hence Â0 ≡ 0 for free EM fields.
?

(a) Given this setup, define the photonic creation and annihilation operators â†k,λ and âk,λ,

verify that they satisfy the bosonic commutations relations, and expand the EM Hamil-

tonian as

Ĥ =

∫
d3x

(
1
2Ê2 + 1

2B̂2
)

=

∫
d3k

(2π3)

1

2|k|

only∑
λ=±1

|k| × â†k,λâk,λ + const. (7)

(b) Go to Heisenberg picture and express time-dependent Âµ(x) fields in terms of the â†k,λ(0)

and âk,λ(0).

(c) Calculate the “vacuum sandwich” of two vector fields and show that

〈0| Âµ(x) Âν(y) |0〉 =

∫
d3k

(2π3)

1

2|k|
Cµν(k) e−ik(x−y)

∣∣∣∣
k0=+|k|

(8)

where

Cij(k) = δij − kikj

k2
, C0i = Ci0 = C00 = 0. (9)

(d) Lemma: show that Cµν(k) = −gµν + kµqν + qµkν for some qν(k).

(e) Finally, derive the Feynman propagator for the EM fields in the Coulomb gauge,

GµνF (x− y) ≡ 〈0|TÂµ(x) Âν(y) |0〉 =

∫
d4k

(2π)4
ie−ik(x−y)

k2 + iε
× Cµν(k). (10)

Note: In other gauges, the EM Feynman propagator is given by formulae which look just

like eq. (10) but with a different Cµν(k) tensor. Generally, Cµν(k) = −gµν + kµqν + qµkν

for some qµ(k), but the specific form of the qµ(k) depends on the gauge.

? For the EM fields coupled to electric charges and currents, the A ≡ 0 gauge condition implies ∇2A0(x, t) =
−ρ(x, t) and hence

A0(x, t) =

∫
d3y

ρ(y, t)

4π|x− y|

is the instantaneous Coulomb field of the electric charge density ρ(y, t). That’s why this gauge is called the
Coulomb gauge.
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2. Next, an exercise in Dirac matrices γµ. Please do not assume any specific form of these

4× 4 matrices, just use the anti-commutation relations

γµγν + γνγµ = 2gµν . (11)

In class, we have defined the spin matrices

Sµν = −Sνµ def
= i

4 [γµ, γν ] (12)

and showed that [
Sµν , γλ

]
= igνλγµ − igµλγν . (13)

(a) Show that the spin matrices Sµν have commutation relations of the Lorentz generators,[
Sκλ, Sµν

]
= igλµSκν − igλνSκµ − igκµSλν + igκνSλµ. (14)

Continuous Lorentz transforms obtain from integrating infinite sequences of infinitesimal

transforms X ′µ = Xµ + εΘµ
νX

ν where Θµν = −Θνµ. Altogether, a finite continuous

transform acts as X ′µ = LµνX
ν where

L = exp(Θ), i. e., Lµν = δµν + Θµ
ν + 1

2Θµ
λΘλ

ν + 1
6Θµ

κΘκ
λΘλ

ν + · · · . (15)

(b) Let L be a Lorentz transform of the form (15), and let M(L) = exp
(
− i

2θαβS
αβ
)
.

Show that M−1(L)γµM(L) = Lµνγ
ν .

Next, a little more algebra:

(c) Calculate {γρ, γλγµγν}, [γρ, γκγλγµγν ] and [Sρσ, γλγµγν ].

(d) Show that γαγα = 4, γαγνγα = −2γν , γαγµγνγα = 4gµν and γαγλγµγνγα = −2γνγµγλ.

Hint: use γαγν = 2gνα − γνγα repeatedly.

A charged spinor field Ψ(x) in an EM background Aµ(x) satisfies gauge-covariant version

of the Dirac equation, namely
(
iγµDµ + m

)
Ψ(x) = 0 where Dµ = ∂µ + iqAµ(x) are the

covariant derivatives.

(e) Show that the this equation implies
(
m2 +D2 + qFµνS

µν
)
Ψ(x) = 0.

3



3. Now consider the γ5
def
= iγ0γ1γ2γ3 matrix.

(a) Show that γ5 anticommutes with each of the γµ matrices — γ5γµ = −γµγ5 — and

commutes with all the spin matrices Sµν .

(b) Show that γ5 is hermitian and that (γ5)2 = 1.

(c) Show that γ5 = (−i/24)εκλµνγ
κγλγµγν and γ[κγλγµγν] = −iεκλµν γ5.

(d) Show that γ[λγµγν] = −iεκλµν γκγ5.

(e) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices:

1, γµ, γ[µγν], γ5γµ, and γ5.

Conventions: ε0123 = +1, ε0123 = −1, γ[µγν] = 1
2(γµγν − γνγµ),

γ[λγµγν] = 1
6(γλγµγν − γλγνγµ + γµγνγλ − γµγλγν + γνγλγµ − γνγµγλ),

and ditto for the γ[κγλγµγν].

Now consider Dirac matrices in spacetime dimensions d 6= 4. Such matrices always satisfy

the Clifford algebra (11), but their sizes depend on d.

Let Γ = inγ0γ1 · · · γd−1 be the generalization of the γ5 to d dimensions; the pre-factor

in = ±i or ±1 is chosen such that Γ = Γ† and Γ2 = +1.

(f) For even d, Γ anticommutes with all the γµ. Prove this, and use this fact to show that

there are 2d independent products of the γµ matrices, and consequently the matrices

should be 2d/2 × 2d/2.

(g) For odd d, Γ commutes with all the Γµ — prove this. Consequently, one can set Γ = +1

or Γ = −1; the two choices lead to in-equivalent sets of the γµ.

Classify the independent products of the γµ for odd d and show that their net number

is 2d−1; consequently, the matrices should be 2(d−1)/2 × 2(d−1)/2.
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4. Because all the Sµν matrices commute with the γ5, all the M(L) matrices are block-diagonal

in the eigenbasis of the γ5. In the Weyl convention for the γ matrices,

M(L) =

(
ML(L) 0

0 MR(L)

)
(16)

where all blocks are 2 × 2. This makes the Dirac spinor a reducible representations of the

continuous Lorentz group SO+(3, 1).

(a) Write down the explicit Sµν matrices in the Weyl convention.

(b) Show that for a pure rotation through angle ϕ around axis n,

ML = MR = exp(− i
2ϕn · σσ). (17)

(c) Show that for a pure boost of rapidity r in the direction n, ML = exp(− r
2 n · σσ) but

MR = exp(+ r
2 n · σσ).

The rapidity is related to the β and γ parameters of a Lorentz boost as β = tanh(r),

γ = cosh(r). For two successive boosts in the same directions, the rapidities add up,

r1+2 = r1 + r2. In terms of the β and γ parameters,

ML =
√
γ ×

√
1 − β n · σσ , MR =

√
γ ×

√
1 + β n · σσ . (18)

The continuous Lorentz group — or rather its double cover Spin(3, 1) — is isomorphic to

SL(2,C), the group of complex 2 × 2 matrices (unitary or not) with det = 1. The ML(L)

matrices act on the fundamental 2 multiplet of this group, while the MR(L) matrices act

on the conjugate 2̄ multiplet.

(d) Show that for any continuous Lorentz transform L,

detML(L) = detMR(L) = 1 and MR = σ2M
∗
Lσ2 . (19)

Hint: for any Pauli matrix σi, σ2σ
∗
i σ2 = −σi.
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