
PHY–396 K. Problem set #9. Due November 13, 2008.

1. The first problem is about plane-wave solutions e−ipxu(p, s) and e+ipxv(p, x) of the Dirac

equation. The 4–component spinors u(p, s) and v(p, s) satisfy

(6p−m)u(p, s) = 0, (6p+m)v(p, s) = 0, u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ .

(1)

Let’s start by writing down explicit formulae for these spinors in the Weyl basis for the γµ

matrices.

(a) Show that for p = 0,

u(p = 0, s) =

(√
mξs
√
mξs

)
(2)

where ξs is a two-component SO(3) spinor encoding the electron’s spin state. The ξs

are normalized to ξ†sξs′ = δs,s′ .

(b) For other momenta, u(p, s) = M(boost)u(p = 0, s) for the appropriate Lorentz boost.

Use explicit formulae for the M(boost) from the previous homework (problem 8.4) to

show that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
. (3)

(c) In class I argued that in the Weyl basis, v(p, s) = γ2u∗(p, s). Show that

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
(4)

where ηs = σ2ξ
∗
s = ±iξ−s. Note that η†Sη = −ξ†Sξ so ηs has opposite spin from ξs; in

Dirac sea terms, this corresponds to holes having opposite spins (as well as pµ) from

the missing negative-energy particles.

(d) Show that for ultra-relativistic electrons or positrons of definite helicity λ = ±1
2 Dirac

plane waves become chiral, i.e. when you split the Dirac spinor into left-handed and
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right-handed Weyl spinors, one of the Weyl spinors becomes large while the other

becomes negligibly small. Specifically,

u(p,−1
2) ≈

√
2E

(
ξL

0

)
, u(p,+1

2) ≈
√

2E

(
0

ξR

)
,

v(p,−1
2) ≈ −

√
2E

(
0

ηL

)
, v(p,+1

2) ≈
√

2E

(
ηR

0

)
.

(5)

Note that for electrons left/right chirality is same as helicity, but for positrons chirality

is opposite from helicity.

Now lets focus on the properties of the u and v that do not depend on the Weyl basis, but

you can use this basis to verify them.

(e) Verify that

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ (6)

and show that

ū(p, s)u(p, s′) = +2mδs,s′ , v̄(p, s)v(p, s′) = −2mδs,s′ . (7)

(f) Show that

∑
s=1,2

uα(p, s)ūβ(p, s) = (6p+m)αβ and
∑
s=1,2

vα(p, s)v̄β(p, s) = (6p−m)αβ . (8)

Hint: since there are only two independent spin states,
∑

s ξsξ
†
s = 12×2.

(g) Prove the Gordon identity

ū(p′, s′)γµu(p.s) =
(p′ + p)µ

2m
ū(p′, s′)u(p, s) +

i(p′ − p)ν
m

ū(p′, s′)Sµνu(p, s). (9)

Hint: First, use Dirac equations for the u and the ū′ to show that

2mū′γµu = ū′(6p′γµ + γµ 6p)u.

(h) Generalize the Gordon identity to ū′γµv, v̄′γµu and v̄′γµv.
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2. Now consider bilinear products of a Dirac field Ψ(x) and its conjugate Ψ(x). Generally,

such products have form ΨΓΨ where Γ is one of 16 matrices discussed in the previous

homework (problem 8.3); altogether, we have

S = ΨΨ, V µ = ΨγµΨ, Tµν = Ψiγ[µγν]Ψ, Aµ = Ψγ5γµΨ, and P = Ψiγ5Ψ.

(10)

(a) Show that all the bilinears (10) are Hermitian.

Hint: First, show that
(
Ψ Γ Ψ

)†
= Ψ Γ Ψ.

Note: despite the Fermi statistics,
(

Ψ†αΨβ

)†
= +Ψ†βΨα.

(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V µ and the Aµ as vectors, and the Tµν as an antisymmetric tensor.

(c) Find the transformation rules of the bilinears (10) under parity and show that while

S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial

vector.

Next, consider charge-conjugation properties of the Dirac bilinears. To avoid the operator-

ordering problems, take Ψ(x) and Ψ†(x) to be “classical” fermionic fields which anticom-

mute with each other, ΨαΨ†β = −Ψ†βΨα.

(d) In the Weyl convention, C : Ψ(x) 7→ ±γ2Ψ∗(x). Show that C : ΨΓΨ 7→ ΨΓcΨ where

Γc = γ0γ2Γ>γ0γ2.

(e) Calculate Γc for all 16 independent matrices Γ and find out which Dirac bilinears are

C–even and which are C–odd.

(f) Verify that the Dirac action is invariant under charge conjugation.

3. Finally, a reading assignment: Read my notes about the Spin–Statistics Theorem at

http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/spinstat.pdf
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