
PHY–396 K. Problem set #15. Due February 19, 2009.

1. First, a simple exercise about the Yukawa theory. For Ms > 2mf the scalar particle

becomes unstable: it decays into a fermion and an antifermion, S → f + f̄ .

(a) Calculate the tree-level decay rate Γ(S → f + f̄).

(b) In class, we have calculated Σ1 loop
Φ (p2). Show that for p2 > 4m2

f this function has an

imaginary part and calculate it for p2 = M2
s + iǫ.

Note: at this level, you may neglect the difference between mbare
f and mphysical

f .

(c) Verify that

ImΣ1 loop
Φ (p2 = M2

s + iǫ) = −MsΓ
tree(S → f + f̄) (1)

and explain this relation in terms of the optical theorem.

The rest of this homework is about the scalar λφ4 theory. As discussed in class, in this theory

field strength renormalization begins at two-loop level. Specifically, the 1PI diagram

(2)

provides the leading contribution to the dΣ(p2)/dp2 and hence to the Z − 1. Your task is to

evaluate this contribution. This is a difficult calculation, so proceed very carefully.

2. First, use Feynman parameters to write the product of 3 propagators as

3
∏

j=1

i

q2j −m2 + i0
=

∫∫∫

dx dy dz δ(x+ y + z − 1)
2i3

(D)3
(3)

where

D = xq21 + yq22 + zq23 − m2 + i0. (4)

Then impose q3 ≡ p− q1− q2 and shift the remaining 2 momentum variables from q1 and
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q2 to k1 = q1 + · · · and k2 = q2 + · · · such that

D = α× k21 + β × k22 + γ × p2 − m2 + i0 (5)

for some (x, y, z)–dependent coefficients α, β, γ, for example

α = (x+ z), β =
xy + xz + yz

x+ z
, γ =

xyz

xy + xz + yz
. (6)

Make sure the momentum shift has unit Jacobian ∂(q1, q2)/∂(k1, k2) = 1.

Warning: Do not set p2 = m2 at this stage.

3. Express the derivative dΣ(p2)/dp2 in terms of

∫∫

d4k1 d
4k2

1

D4
. (7)

Note that although this momentum integral diverges as k1,2 → ∞, the divergence is

logarithmic rather than quadratic.

4. To evaluate the momentum integral (7), first rotate both momenta k1 and k2 from

Minkowski to Euclidean space, and then use dimensional regularization. You should

get a formula looking like

dΣ

dp2
=

∫∫∫

dxdydz δ(x+ y + z − 1)F (x, y, z)×

×

{

1

ǫ
+ log

µ2

m2
+ const + logG(x, y, z; p2/m2)

} (8)

for some rational functions F and G of the Feynman parameters (and in case of G, also

of p2/m2). Here are some useful formulæ for this problem:

6

A4
=

∞
∫

0

dt t3 e−At, (9)

∫

dDk

(2π)D
e−ctk2

=
(

4πct
)

−D/2
, (10)

Γ(2ǫ)Xǫ =
1

2ǫ
− γE + 1

2
logX + O(ǫ). (11)

5. Before you evaluate the Feynman parameter integral (8)— which looks like a frightful

mess — make sure it does not introduce its own divergences. That is, without actually
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calculating the integrals

∫∫∫

dxdydz δ(x+ y + z − 1)F (x, y, z) (12)

and

∫∫∫

dxdydz δ(x+ y + z − 1)F (x, y, z)× logG(x, y, z; p2/m2) (13)

make sure that they converge. Pay attentions to the boundaries of the parameter space

and especially to the corners where x, y → 0 while z → 1 (or x, z → 0, or y, z → 0).

This calculation shows that

dΣ

dp2
=

constant

ǫ
+ a finite function(p2) (14)

and hence

Σ(p2) = (a divergent constant) + (another divergent constant)× p2

+ a finite function(p2)
(15)

up to the two-loop order. In fact, this behavior persists to all loops, so all the divergences

of Σ(p2) may be canceled with just two counterterms, δm and δZ × p2.

6. Finally, let’s use bare perturbation theory (bare λ and bare m2 instead of the countert-

erms) and calculate field strength renormalization factor

Z =

[

1 −
dΣ

dp2

]

−1

(16)

The derivative here should be evaluated at p2 = M2
ph — the physical mass2 of the scalar

particle, but to the leading approximation we may let M2
ph ≈ m2 and set p2 = m2 in

eq. (8). This should simplify the G(x, y, z) function, but the integral is still a big mess.

Do not try to evaluate the integrals (12) and (13) by hand — it would take way too

much time. Instead, use Mathematica or equivalent software. To help it along, replace
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the (x, y, z) variables with (w, ξ) according to

x = xi× w, y = (1− ξ)× w, z = 1− w,

∫∫

1
∫

0

dxdydz δ(x+ y + z − 1) =

1
∫

0

dww

1
∫

0

dξ,
(17)

then integrate over the w variable first and over the ξ second. Here is a couple of integrals

I did this way you might find useful:

∫∫∫

dxdydz δ(x+ y + z − 1)×
xyz

(xy + xz + yz)3
=

1

2
,

∫∫∫

dxdydz δ(x+ y + z − 1)×
xyz

(xy + xz + yz)3
× log

(xy + xz + yz)3

(xy + xz + yz − xyz)2
= −

3

4
.

(18)

Alternatively, you may evaluate the integrals like this numerically. In this case, don’t

bother changing variables, just use a simple 2D grid spanning a triangle defined by x +

y + z = 1, x, y, z ≥ 0; modern computers can sum up to 108 grid points in just a few

seconds. But watch out for singularities at the corners of the triangle.
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