1. First, a simple exercise about the Yukawa theory. For $M_{s}>2 m_{f}$ the scalar particle becomes unstable: it decays into a fermion and antifermion, $S \rightarrow f+\bar{f}$.
(a) Calculate the tree-level decay rate $\Gamma(S \rightarrow f+\bar{f})$.
(b) In class, we have calculated $\Sigma_{\Phi}^{1 \text { loop }}\left(p^{2}\right)$. Show that for $p^{2}>4 m_{f}^{2}$ this function has an imaginary part and calculate it for $p^{2}=M_{s}^{2}+i \epsilon$.
Note: at this level, you may neglect the difference between $m_{f}^{\text {bare }}$ and $m_{f}^{\text {physical }}$.
(c) Verify that

$$
\begin{equation*}
\operatorname{Im} \Sigma_{\Phi}^{1 \text { loop }}\left(p^{2}=M_{s}^{2}+i \epsilon\right)=-M_{s} \Gamma^{\text {tree }}(S \rightarrow f+\bar{f}) \tag{1}
\end{equation*}
$$

and explain this relation in terms of the optical theorem.

The rest of this homework is about the scalar $\lambda \phi^{4}$ theory. As discussed in class, in this theory field strength renormalization begins at two-loop level. Specifically, the 1PI diagram

provides the leading contribution to the $d \Sigma\left(p^{2}\right) / d p^{2}$ and hence to the $Z-1$. Your task is to evaluate this contribution. This is a difficult calculation, so proceed very carefully.
2. First, use Feynman parameters to write the product of 3 propagators as

$$
\begin{equation*}
\prod_{j=1}^{3} \frac{i}{q_{j}^{2}-m^{2}+i 0}=\iiint d x d y d z \delta(x+y+z-1) \frac{2 i^{3}}{(\mathcal{D})^{3}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{D}=x q_{1}^{2}+y q_{2}^{2}+z q_{3}^{2}-m^{2}+i 0 \tag{4}
\end{equation*}
$$

Then impose $q_{3} \equiv p-q_{1}-q_{2}$ and shift the remaining 2 momentum variables from q_{1} and
q_{2} to $k_{1}=q_{1}+\cdots$ and $k_{2}=q_{2}+\cdots$ such that

$$
\begin{equation*}
\mathcal{D}=\alpha \times k_{1}^{2}+\beta \times k_{2}^{2}+\gamma \times p^{2}-m^{2}+i 0 \tag{5}
\end{equation*}
$$

for some (x, y, z)-dependent coefficients α, β, γ, for example

$$
\begin{equation*}
\alpha=(x+z), \quad \beta=\frac{x y+x z+y z}{x+z}, \quad \gamma=\frac{x y z}{x y+x z+y z} . \tag{6}
\end{equation*}
$$

Make sure the momentum shift has unit Jacobian $\partial\left(q_{1}, q_{2}\right) / \partial\left(k_{1}, k_{2}\right)=1$.
Warning: Do not set $p^{2}=m^{2}$ at this stage.
3. Express the derivative $d \Sigma\left(p^{2}\right) / d p^{2}$ in terms of

$$
\begin{equation*}
\iint d^{4} k_{1} d^{4} k_{2} \frac{1}{\mathcal{D}^{4}} . \tag{7}
\end{equation*}
$$

Note that although this momentum integral diverges as $k_{1,2} \rightarrow \infty$, the divergence is logarithmic rather than quadratic.
4. To evaluate the momentum integral (7), first rotate both momenta k_{1} and k_{2} from Minkowski to Euclidean space, and then use dimensional regularization. You should get a formula looking like

$$
\begin{align*}
\frac{d \Sigma}{d p^{2}}=\iiint d x d y d z & \delta(x+y+z-1) F(x, y, z) \times \\
& \times\left\{\frac{1}{\epsilon}+\log \frac{\mu^{2}}{m^{2}}+\text { const }+\log G\left(x, y, z ; p^{2} / m^{2}\right)\right\} \tag{8}
\end{align*}
$$

for some rational functions F and G of the Feynman parameters (and in case of G, also of $\left.p^{2} / m^{2}\right)$. Here are some useful formulæ for this problem:

$$
\begin{align*}
\frac{6}{A^{4}} & =\int_{0}^{\infty} d t t^{3} e^{-A t} \tag{9}\\
\int \frac{d^{D} k}{(2 \pi)^{D}} e^{-c t k^{2}} & =(4 \pi c t)^{-D / 2} \tag{10}\\
\Gamma(2 \epsilon) X^{\epsilon} & =\frac{1}{2 \epsilon}-\gamma_{E}+\frac{1}{2} \log X+O(\epsilon) \tag{11}
\end{align*}
$$

5. Before you evaluate the Feynman parameter integral (8) - which looks like a frightful mess - make sure it does not introduce its own divergences. That is, without actually
calculating the integrals

$$
\begin{align*}
& \quad \iiint d x d y d z \delta(x+y+z-1) F(x, y, z) \tag{12}\\
& \text { and } \quad \iiint d x d y d z \delta(x+y+z-1) F(x, y, z) \times \log G\left(x, y, z ; p^{2} / m^{2}\right) \tag{13}
\end{align*}
$$

make sure that they converge. Pay attentions to the boundaries of the parameter space and especially to the corners where $x, y \rightarrow 0$ while $z \rightarrow 1$ (or $x, z \rightarrow 0$, or $y, z \rightarrow 0$).

This calculation shows that

$$
\begin{equation*}
\frac{d \Sigma}{d p^{2}}=\frac{\text { constant }}{\epsilon}+\text { a_finite_function }\left(p^{2}\right) \tag{14}
\end{equation*}
$$

and hence

$$
\begin{align*}
\Sigma\left(p^{2}\right)=(\text { a divergent constant }) & +(\text { another divergent constant }) \times p^{2} \\
& + \text { a_finite_function }\left(p^{2}\right) \tag{15}
\end{align*}
$$

up to the two-loop order. In fact, this behavior persists to all loops, so all the divergences of $\Sigma\left(p^{2}\right)$ may be canceled with just two counterterms, δ^{m} and $\delta^{Z} \times p^{2}$.
6. Finally, let's use bare perturbation theory (bare λ and bare m^{2} instead of the counterterms) and calculate field strength renormalization factor

$$
\begin{equation*}
Z=\left[1-\frac{d \Sigma}{d p^{2}}\right]^{-1} \tag{16}
\end{equation*}
$$

The derivative here should be evaluated at $p^{2}=M_{\mathrm{ph}}^{2}$ - the physical mass ${ }^{2}$ of the scalar particle, but to the leading approximation we may let $M_{\mathrm{ph}}^{2} \approx m^{2}$ and set $p^{2}=m^{2}$ in eq. (8). This should simplify the $G(x, y, z)$ function, but the integral is still a big mess.

Do not try to evaluate the integrals (12) and (13) by hand - it would take way too much time. Instead, use Mathematica or equivalent software. To help it along, replace
the (x, y, z) variables with (w, ξ) according to

$$
\begin{align*}
& x= x i \times w, \quad y=(1-\xi) \times w, \quad z=1-w, \\
& \iiint_{0}^{1} d x d y d z \delta(x+y+z-1)=\int_{0}^{1} d w w \int_{0}^{1} d \xi \tag{17}
\end{align*}
$$

then integrate over the w variable first and over the ξ second. Here is a couple of integrals I did this way you might find useful:

$$
\begin{align*}
& \iiint d x d y d z \delta(x+y+z-1) \times \frac{x y z}{(x y+x z+y z)^{3}}=\frac{1}{2}, \\
& \iiint d x d y d z \delta(x+y+z-1) \times \frac{x y z}{(x y+x z+y z)^{3}} \times \log \frac{(x y+x z+y z)^{3}}{(x y+x z+y z-x y z)^{2}}=-\frac{3}{4} . \tag{18}
\end{align*}
$$

Alternatively, you may evaluate the integrals like this numerically. In this case, don't bother changing variables, just use a simple 2D grid spanning a triangle defined by $x+$ $y+z=1, x, y, z \geq 0 ;$ modern computers can sum up to 10^{8} grid points in just a few seconds. But watch out for singularities at the corners of the triangle.

