PHY-396 L. Problem set #22. Due April 23, 2009.

1. First, a bit of group theory. Consider a generic simple non-abelian compact Lie group G

and its generators T%. For a suitable normalization of the generators,
b (TOT?) = tr (Tg)Tfr)) — R(r)se (1)

where the trace is taken over any complete multiplet (r) — irreducible or reducible, it
does not matter — and T(‘i, ) is the matrix representing the generator 7'* in that multiplet.
The coefficient R(r) in eq. (1) depends on the multiplet (r) but it’s the same for all

generators 7% and T?.

The (quadratic) Casimir operator Cy = ) T*T* commutes with all the generators,
Vb, [Co, T% = 0. Consequently, when we restrict this operator to any irreducible multiplet

(r) of the group G it becomes a unit matrix times some number C(r). In other words,

for an irreducible (r), ZT@,)T&) = C(r) x 1. (2)

For example, for the isospin group SU(2), the Casimir operator is Co = I_Q, the irreducible
multiplets have definite isospin I = 0, %, 1, %, 2,..,and C(I)=I(I+1).
(a) Show that for any irreducible multiplet (r),
R(r)  dim(r) 3)
C(r)  dim(G)"

In particular, for the SU(2) group, this formula gives R(I) = %I(I +1)(2I +1).

(b) Suppose the first three generators of G generate an SU(2) subgroup. Show that if a
multiplet () of G decomposes into several SU(2) multiplets of isospins I3, I2, . .., I,
then

n

R(r) =Y 3L(Li+1)(2L +1). (4)
=1

(¢) Now consider the SU(N) group with an obvious SU(2) subgroup of matrices acting

only on the first two components of a complex N-vector. This complex N-vector is



called the fundamental multiplet (of the SU(N)) and denoted (N) or N. As far as
the SU(2) subgroup is concerned, (N) comprises one doubles and N — 2 singlets,

hence hence

2 _
R(N) = 1 and C(N) = NQNI. (5)

Show that the adjoint multiplet of the SU(N) decomposes into one SU(2) triplet,
2(N — 2) doublets, and (N — 2)? singlets, therefore

R(adj) = C(adj) = C(G) = N. (6)

Hint: (N) x (V) = (adj) + (1).

(d) The symmetric and the anti-symmetric 2-index tensors form irreducible multiplets
of the SU(N) group. Find out the decomposition of these multiplets under the
SU(2) C SU(N) and calculate their respective R factors and Casimirs C'.

. Now let’s apply this group theory to physics. Consider quark-antiquark pair production

in QCD, specifically uii — dd. There is only one tree diagram contributing to this process,

d d

U U (7)

Evaluate this diagram, then sum/average the |M|? over both spins and colors of the
final /initial particles to calculate the total cross section. For simplicity, you may neglect

the quark masses.

Note that the diagram (7) looks exactly like the QED pair production process e”et —
virtual v — = u™, so you can re-use the QED formula for summing/averaging over the
spins. But in QCD, you should also sum/average over colors of all the quarks, and that’s

the whole point of this exercise.



3. Next, consider a scalar analogue of QCD, or more generally a theory of Yang-Mills fields

A, and complex scalars ®; in some multiplet (r) of the gauge group G.

(a) Write down the Lagrangian and the Feynman rules of this theory.

Next, consider the annihilation process ® + ®* — 2 gauge bosons. At the tree level, there

are four Feynman diagrams contributing to this process.
(b) Draw the diagrams and write down the tree-level annihilation amplitude.

As discussed in class, amplitudes involving the non-abelian gauge fields satisfy a weak
form of the Ward identity: On-shell Amplitudes involving a longitudinally polarized gauge
boson vanish, provided all the other gauge bosons are transversely polarized. In other

words,

M = ey et My, ., (momenta) = 0

when e*fock{t but eSka, = -+ = epkn = 0.

(c) Verify this identity for the scalar annihilation amplitude.

4. To convert the annihilation amplitude into a cross-section we need to sum/average over
the colors of all the particles. As a first step in this direction, it’s convenient to write the

amplitude as
M(j+i—a+b) = Fx{T" TV, + iG x [T*, T} (8)

where F' and G are some functions of momenta and polarizations of the vector particles
while a, b, i, and j are the color indices of the four particles. Specifically, the a and b
colors of the gauge bosons run over the adjoint multiplet of GG, the j index of the scalar
‘quark’ runs over the multiplet (), and the i index of the scalar ‘antiquark’ runs over the

conjugate multiplet (7).

(a) Show that the annihilation amplitude indeed has form (8) and write down the coef-

ficients F' and G as explicit functions of the particles momenta and polarizations.



(b) Next, let us sum the | M|? over the gauge boson’s colors and average over the scalars’

colors. Show that

1 C(r) 2 : 2 2

MP? = — x (4C(r) x |F|* + C(adj) x (|G]* = |F*)). (9
Ty 2 M = gy ¢ A0 <P + Clad)x (G 1), )
In particular, for scalars in the fundamental representation of the SU(N) gauge

group,

1 N?—1(N?-2
w XS IME = o (e M), (10)

ij ab

(c) Evaluate F' and G in the center of mass frame. In this frame, the vector particles’
polarizations e’iz = (0, e1 2) are purely spatial and transverse to the vectors momenta

+k. For simplicity, use planar rather than circular polarizations.

(d) Finally, calculate the (polarized, partial) cross-section for the annihilation process.



