
PHY–396 L. Problem set #22. Due April 23, 2009.

1. First, a bit of group theory. Consider a generic simple non-abelian compact Lie group G

and its generators T a. For a suitable normalization of the generators,

tr(r)(T
aT b) ≡ tr

(

T a
(r)T

b
(r)

)

= R(r)δab (1)

where the trace is taken over any complete multiplet (r) — irreducible or reducible, it

does not matter — and T a
(r) is the matrix representing the generator T a in that multiplet.

The coefficient R(r) in eq. (1) depends on the multiplet (r) but it’s the same for all

generators T a and T b.

The (quadratic) Casimir operator C2 =
∑

a T
aT a commutes with all the generators,

∀b, [C2, T
b] = 0. Consequently, when we restrict this operator to any irreducible multiplet

(r) of the group G it becomes a unit matrix times some number C(r). In other words,

for an irreducible (r),
∑

a

T a
(r)T

a
(r) = C(r)× 1(r) . (2)

For example, for the isospin group SU(2), the Casimir operator is C2 = ~I2, the irreducible

multiplets have definite isospin I = 0, 12 , 1,
3
2 , 2, . . ., and C(I) = I(I + 1).

(a) Show that for any irreducible multiplet (r),

R(r)

C(r)
=

dim(r)

dim(G)
. (3)

In particular, for the SU(2) group, this formula gives R(I) = 1
3I(I + 1)(2I + 1).

(b) Suppose the first three generators of G generate an SU(2) subgroup. Show that if a

multiplet (r) of G decomposes into several SU(2) multiplets of isospins I1, I2, . . . , In,

then

R(r) =

n
∑

i=1

1
3Ii(Ii + 1)(2Ii + 1). (4)

(c) Now consider the SU(N) group with an obvious SU(2) subgroup of matrices acting

only on the first two components of a complex N -vector. This complex N -vector is
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called the fundamental multiplet (of the SU(N)) and denoted (N) or N. As far as

the SU(2) subgroup is concerned, (N) comprises one doubles and N − 2 singlets,

hence hence

R(N) = 1
2 and C(N) =

N2 − 1

2N
. (5)

Show that the adjoint multiplet of the SU(N) decomposes into one SU(2) triplet,

2(N − 2) doublets, and (N − 2)2 singlets, therefore

R(adj) = C(adj) ≡ C(G) = N. (6)

Hint: (N)× (N) = (adj) + (1).

(d) The symmetric and the anti-symmetric 2–index tensors form irreducible multiplets

of the SU(N) group. Find out the decomposition of these multiplets under the

SU(2) ⊂ SU(N) and calculate their respective R factors and Casimirs C.

2. Now let’s apply this group theory to physics. Consider quark-antiquark pair production

in QCD, specifically uū → dd̄. There is only one tree diagram contributing to this process,

u ū

d d̄

(7)

Evaluate this diagram, then sum/average the |M|2 over both spins and colors of the

final/initial particles to calculate the total cross section. For simplicity, you may neglect

the quark masses.

Note that the diagram (7) looks exactly like the QED pair production process e−e+ →

virtual γ → µ−µ+, so you can re-use the QED formula for summing/averaging over the

spins. But in QCD, you should also sum/average over colors of all the quarks, and that’s

the whole point of this exercise.
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3. Next, consider a scalar analogue of QCD, or more generally a theory of Yang–Mills fields

Aa
µ and complex scalars Φi in some multiplet (r) of the gauge group G.

(a) Write down the Lagrangian and the Feynman rules of this theory.

Next, consider the annihilation process Φ+Φ∗ → 2 gauge bosons. At the tree level, there

are four Feynman diagrams contributing to this process.

(b) Draw the diagrams and write down the tree-level annihilation amplitude.

As discussed in class, amplitudes involving the non-abelian gauge fields satisfy a weak

form of the Ward identity: On-shell Amplitudes involving a longitudinally polarized gauge

boson vanish, provided all the other gauge bosons are transversely polarized. In other

words,

M ≡ e
µ1

1 e
µ2

2 · · · eµn

n Mµ1µ2···µn
(momenta) = 0

when e
µ
1 ∝ k

µ
1 but eν2k2ν = · · · = eνnknν = 0.

(c) Verify this identity for the scalar annihilation amplitude.

4. To convert the annihilation amplitude into a cross-section we need to sum/average over

the colors of all the particles. As a first step in this direction, it’s convenient to write the

amplitude as

M(j + i → a+ b) = F × {T a, T b}ij + iG× [T a, T b]ij (8)

where F and G are some functions of momenta and polarizations of the vector particles

while a, b, i, and j are the color indices of the four particles. Specifically, the a and b

colors of the gauge bosons run over the adjoint multiplet of G, the j index of the scalar

‘quark’ runs over the multiplet (r), and the i index of the scalar ‘antiquark’ runs over the

conjugate multiplet (r̄).

(a) Show that the annihilation amplitude indeed has form (8) and write down the coef-

ficients F and G as explicit functions of the particles momenta and polarizations.
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(b) Next, let us sum the |M|2 over the gauge boson’s colors and average over the scalars’

colors. Show that

1

dim2(r)

∑

ij

∑

ab

|M|2 =
C(r)

dim(r)
×

(

4C(r)× |F |2 + C(adj)× (|G|2 − |F |2)
)

. (9)

In particular, for scalars in the fundamental representation of the SU(N) gauge

group,

1

N2

∑

ij

∑

ab

|M|2 =
N2 − 1

2N2

(

N2 − 2

N
|F |2 + N |G|2

)

. (10)

(c) Evaluate F and G in the center of mass frame. In this frame, the vector particles’

polarizations eµ1,2 = (0, e1,2) are purely spatial and transverse to the vectors momenta

±k. For simplicity, use planar rather than circular polarizations.

(d) Finally, calculate the (polarized, partial) cross-section for the annihilation process.
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