
Magnetic Monopoles.

The easiest way to visualize a magnetic monopole is by considering a pole of

a long, thin magnet or an end point of a long, thin solenoid. Let us choose our

coordinates such that the pole is at the origin and the magnet goes along the

negative z semiaxis. Then, in polar coordinates,

B(r, θ, φ) =
m

r2
er (1)

(er us the unit vector in the radial direction) everywhere outside the magnet, while

inside the magnet there is magnetic flux 4πm towards the pole.

Suppose the magnet is infinitely thin, infinitely long and does not interact with

the rest of the universe except through the magnetic field it carries. Classically,

all one can observe under such circumstances is the magnetic field (1), so for

all intents and purposes we have a magnetic monopole of magnetic charge m.

In quantum mechanics however, one can also detect the Aharonov-Bohm effect

due to the magnetic flux 4πm inside the magnet. This makes the magnet itself

detectable along its entire length — unless 4πm · q/2πh̄c is an integer and the

Aharonov-Bohm effect dissapears. Hence, the Dirac’s quantization condition: For

all magnetic monopoles in the universe and for all electrically-charged particles in

the universe,

mq = (12 h̄c) times an integer. (2)

Consequently, if there is a magnetic monopole anywhere in the universe, all elec-

trical charges must be quantized.

A more rigorous argument (made by P. A. M. Dirac himself years before the

discovery of the Aharonov-Bohm effect) involves two singular vector potentials

A±(r, θ, φ) = m
±1− cos θ

r sin θ
eφ , (3)
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which are are gauge-equivalent to each other:

A+ − A− =
2m eφ
r sin θ

= 2m∇φ (4)

and thus lead to the same magnetic field B, namely (1):

∇×A± = ∇× (m(±1− cos θ)∇φ) = m (∇(±1− cos θ))×∇φ

= m
sin θ eθ
r

×
eφ

r sin θ
=

mer
r2

.
(5)

The vector potential A+ has a so-called “Dirac string” of singularities along the

negative z semiaxis (θ = π); similarly, the A− has a Dirac string along the positive

z semiaxis (θ = 0). Although both the A+ and the A− are singular, together they

provide for a non-singular picture of the monopole’s field: One simply uses the A+

in the region 0 ≤ θ < π − ε (where it’s non-singular) while the A− should be used

for ε < θ ≤ π; together, the two regions cover the whole space (except the site of

the monopole itself). In the overlap region ε < θ < π − ε one may use either A+

or A−.

In quantum mechanics, a gauge transformation of the vector potential A

should be accompanied by a phase transformation of the wave functions of charged

particles. Hence, using two gauge-equivalent vector potentials to describe the

monopole’s field requires us to use two wave functions for any charged particle,

namely Ψ+(r, θ, φ) for 0 ≤ θ < π − ε and Ψ−(r, θ, φ) for ε < θ ≤ π. In the overlap

region ε < θ < π − ε, the two wave functions must be related to each other by a

phase transformation that corresponds to the gauge transformation (4):

Ψ+(r, θ, φ) = Ψ−(r, θ, φ) · exp

(
2iqmφ

h̄c

)
. (6)

In order to make physical sence, a wave-function of a particle must be continuous

and single-valued. In the presence of a monopole, both Ψ+ and Ψ− must be single-

valued. Hence, the relation (6) makes physical sence if and only if exp(4πiqm/h̄c) =

1, i.e. the product of the monopole’s magnetic charge m and the particle’s electric

charge q satisfies the Dirac’s quantization condition (2).
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In gaussian units of measurement, magnetic and electric charges have the same

dimensionality. However, the quanta of the two charges are quite different: The

electric charges of all free particles are quantized in units of e; hence, according to

eq. (2), all the magnetic charges should be quantized in units of

h̄c

2e
≈ 137

2
e. (7)

Of course, as far as the Quantum electrodynamics is concerned, the monopoles do

not have to exist at all, but if they do exist, their charges must be quantized in

units of (7). Furthermore, if as much as one magnetic monopole exist anywhere in

the universe then the electric charges of all free particles must be exactly quantized.

Historically, Dirac discovered the magnetic monopole while trying to explain the

value of the electric charge quantum e; instead, he found a reason for the charge

quantization, but no explanation for e2 ≈ h̄c/137, and he was quite disappointed.

Today, we have other explanations of the electric charge quantization; in par-

ticular the Grand Unification of strong, weak and electromagnetic interactions

at extremely high energies produces quantized electrical charges. Curiously, the

same Grand Unified Theories also predict that there are magnetic monopoles with

charges (7). More recently, several attempts to unify all the fundamental interac-

tions withing the context of the String Theory also gave rise to magnetic monopoles,

with charges quantized in units of Nh̄c/2e, where N is an integer such as 3 or 5.

It was later found that in the same theories, there were superheavy particles with

fractional electric charges e/N , so the monopoles in fact had the smallest non-zero

charges allowed by the Dirac condition (2)! Presently, some theoretical physicists

believe that any fundamental theory that provides for exact quantization of the

electric charge should also provide for the existence of magnetic monopoles, but

this conjecture has not been proven (yet).

Suggested Reading: J. J. Sakurai, Modern Quantum Mechanics, §2.6.
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