
Renormalization Scheme Dependence

The running couplings such as λ(E) depend not only on the energy scale E but also on

the specific rules we use to fix the finite parts of δλ(E) and other counterterms. If we change

those rules — collectively known as the renormalization scheme — then for the same energy

scale E we would get a slightly different running coupling λ′(E) 6= λ(E). The difference is

due to quantum corrections which usually start at one loop, so

λ′(E) = λ(E) + O(λ2(E)). (1)

Corollary to this scheme-dependence of the coupling λ(E), the beta-function

β(λ) ≡
dλ(E)

d logE
(2)

also depends on the renormalization scheme, β′(λ′) 6= β(λ). However, this dependence starts

at the three-loop level; the one-loop and two-loop terms in the beta-function are the same in

all renormalization schemes!

Before I prove this statement, let me make it precise. In a theory with a single running

coupling λ(E) (or α(E) = e2(E)/4π, or whatever), its beta-function is a power series

β(λ) = b1λ
2 + b2λ

3 + b3λ
4 + · · · (3)

with some constant coefficients b1, b2, b3, . . .; each bℓ arises at the ℓ–loop order of the per-

turbation theory. Now let’s change the renormalization scheme (for the same theory) so the

coupling becomes λ′(E) and the beta-function becomes

β′(λ′) = b′1λ
′2 + b′2λ

′3 + b′3λ
′4 + · · · (4)

— a power series similar to (3), but maybe with different coefficients b′1, b
′

2, b
′

3, . . ..

Theorem: the one-loop and two-loop coefficients are the same in all renormalization schemes,

b′1 = b1 and b′2 = b2, but the three-loop and higher-loop coefficients are scheme dependent,

b′ℓ 6= bℓ for ℓ ≥ 3.

1



Proof: Let’s spell out eq. (1) as a power series

λ′(E) = λ(E) + C1 × λ2(E) + C2 × λ3 + · · · (5)

with some constant coefficients C1, C2, . . .. Consider the inverse couplings 1/λ and

1

λ′(E)
=

1

λ(E)
− C1 + (C2

1 − C2)λ(E) + · · · . (6)

These inverse couplings depend on energy according to

d

logE

1

λ(E)
=

−1

λ2(E)
×

(

dλ(E)

d logE
= β(λ(E))

)

= −b1 − b2 × λ(E) − b3 × λ2(E) − · · · ,

(7)

and similarly

d

logE

1

λ′(E)
= −b′1 − b′2 × λ′(E) − b′3 × λ′2 − · · · . (8)

On the other hand, differentiating both sides of eq. (6) gives us

d

logE

1

λ′(E)
=

d

dλ(E)

(

1

λ′(E)

)

×

(

dλ(E)

d logE
= β(λ(E))

)

=

(

−1

λ2(E)
+

0

λ(E)
+ (C2

1 − C2) + O(λ(E))

)

×

×
(

b1 × λ2(E) + b2 × λ3(E) + b3 × λ4(E) + · · ·
)

= −b1 − b2 × λ(E) −
[

b3 − b1(C
2
1 − C2)

]

× λ2(E) − · · ·

= −b1 − b2 × λ′(E) − [b3 − b2C1 − b1(C
2
1 − C2)

]

× λ′2(E) − · · · .

(9)

Comparing this formula to eq. (8) we immediately see that b′1 = b1 and b′2 = b2 but b′3 =

b3 − b2C1 − b1(C
2
1 − C2) 6= b3, and it’s obvious that the higher-order coefficients are also

renormalization scheme dependent, b′4 6= b4, etc., etc.

A similar theorem applies to theories with multiple couplings gi(E): Write all beta-

functions βi as power series in g1(E), . . . , gn(E) with some numerical coefficients; the co-

efficients of all terms which arise at the one-loop or two-loop orders do not depend on the

choice of the renormalization scheme, but the coefficients of the three-loop and higher-order

terms are scheme-dependent.
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Minimal Subtraction

Over the years, field theorists invented all kinds of renormalization schemes. But since

1970’s, the most popular schemes are the Minimal Subtraction (MS) and its close cousins MS,

DR, and DR. Here are the rules for the MS scheme:

1. Use dimensional regularization to control the UV divergences.

Note: this rule is peculiar to Minimal Subtraction and similar schemes. The other renormalization

schemes do not care what the UV regulator is, you can use whatever regulator you like as long as

it works (i.e., regulates all the UV divergences and does not break symmetries that lead to Ward

identities).

2. Identify the µ parameter of dimensional regularization

d4p

(2π)4
→ µ4−D ×

dDp

(2π)D
(10)

with the energy scale E of the renormalization group. This identifications sets the

ubiquitous logarithm log(µ2/E2) to zero.

3. In general, the overall UV divergence of some L-loop amplitude is a degree-L polynomial

in 1/ǫ, for example

⊃ 6p× g2L ×

(

AL

ǫL
+

AL−1

ǫL−1
+ · · · +

A1

ǫ
+ a finite function of (p2)

)

(11)

for some constants AL, . . . , A1, and to cancel such a divergence we need an L-loop-order

counterterm

δZL loops = g2L ×

(

AL

ǫL
+

AL−1

ǫL−1
+ · · · +

A1

ǫ
+ A0

)

. (12)

In this counterterm, the coefficients AL, . . . , A1 are completely determined by the UV

divergence of the L-loop diagrams, but the finite free term A0 is not: its value follows not

from the divergence but from the renormalization scheme we use for the amplitude (11).

In the MS scheme, we do not impose any conditions on amplitudes. Instead, we simply

set A0 = 0. Likewise, the finite parts of all the other counterterms are set to zero.
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This is called Minimal Subtraction because all the counterterms do is to subtract the

pole at ǫ = 0; the finite part of the amplitude is whatever the loop diagrams produce,

the counterterms do not mess with it.

⋆ ⋆ ⋆

In general, an L-loop counterterm in the MS renormalization scheme comprises poles in

1/ǫ of orders 1 through L. However, there are recursion relations for all the higher poles 1/ǫ2,

1/ǫ3, etc., in terms of lower-degree poles of lower-loop-order counterterms. For example, the

1/ǫ2 pole of a 2-loop counterterm can be obtained from the 1/ǫ poles of the 1-loop counterterms

without doing any 2-loop calculations. Only the simple 1/ǫ poles have to calculated the hard

way for each loop order: QFT is hard, but not quite as hard as it could be.

In these notes, I’ll write the recursion relations for the 1/ǫ2, etc., poles for the counterterms

combinations used for calculating the beta-functions. I’ll also write down a closed formula for

the beta-function(s) in terms of the simple 1/ǫ poles only. Recursion relations for the other

counterterms are left out as an optional exercise for the students. (In case you have nothing

else to do during the summer break, or if you need them for your own research.)

Let’s start with the λφ4 theory. As explained in class, the renormalized coupling λ(µ) is

related to the bare coupling λb according to

λb =
λ(µ) + δλ(µ)

(1 + δZ(µ))2
(13)

In the MS scheme, the counterterms are given by power series

δλ =
∞
∑

L=1

λL+1 ×
L
∑

k=1

AL,k

ǫk
,

δZ =
∞
∑

L=1

λL ×
L
∑

k=1

BL,k

ǫk

(14)

with some constant coefficients AL,k and BL,k. In the perturbative series like (14) we should

treat the coupling λ as infinitesimally small, so small that even λ/ǫ is small despite the eventual

ǫ → 0 limit. In other words, we should take the λ → 0 limit before taking ǫ to zero. In this
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limit, the right hand side of eq. (13) also becomes a power series

λ(µ) + δλ(µ)

(1 + δZ(µ))2
= λ(µ) +

∞
∑

L=1

λL+1(µ)×
L
∑

k=1

CL,k

ǫk
(15)

where the coefficients CL,k are given by polynomials in AL′,k′ and BL′,k′ with L′ ≤ L and

k′ ≤ k,

C1,1 = A1,1−2B1,1 , C2,1 = A2,1−2B1,1 , C2,2 = A22−A11B11+3B2
11−2B2,2 , . . . .

(16)

Let’s re-organize the series (15) by summing over the loop order L before summing over the

pole degree k, thus

λ(µ) + δλ(µ)

(1 + δZ(µ))2
= λ(µ) +

∞
∑

k=1

fk(λ(µ))

ǫk
(17)

where

fk(λ) ≡
∞
∑

L=k

CL,kλ
L+1. (18)

In a moment, we shall see that all the higher-pole coefficients f2(λ), f3(λ), etc., are completely

determined by the simple-pole coefficient f1(λ), and there is a simple formula for the beta-

function β(λ) in terms of just the f1(λ). But before I prove this statement, let me mention

that for k = 1 the CL,1 is simply AL,1 − 2BL,1, hence

f1(λ) = residue of the simple
1

ǫ
pole of δλ − 2λδZ , (19)

and that’s all we need to know to calculate the beta-function β(λ).

Eq. (17) spells out the right hand side of eq. (13) for any dimension D = 4− 2ǫ 6= 4. Now

let’s take a closer look at the left hand side for D 6= 4. The problem with the bare coupling

λb is that it’s dimensionless only in D = 4 dimensions, but in other D it has dimensionality

mass∆ where

∆ = D − 4 dim[Φ] = D − 4
D − 2

2
= 4−D = 2ǫ. (20)

The running coupling λ(µ) suffers from a similar problem, but we can make it dimensionless

for any D 6= 4 by rescaling λ(µ) → [λ(µ)]dimensionless × µ2ǫ. In fact, such rescaling happens

5



automatically when we define the loop momentum integrals in D dimensions according to

eq. (10), so in eq. (17) λ(µ) is already dimensionless.

But when we apply a similar rescaling to the bare coupling λb, we make the coupling

dimensionless but µ-dependent. In class, we have derived the beta-function from the fact that

λb was divergent but E-independent, but now that we work in D 6= 4 dimensions, we should

use

λb(µ) =
divergent constant

µ2ǫ
(21)

on the left hand side of eq. (13). Thus, combining eqs. (13) and (17), we arrive at

const

µ2ǫ
= λ(µ) +

∞
∑

k=1

fk(λ(µ))

ǫk
. (22)

Now let’s differentiate both sides of eq. (22) with respect to logµ. The right hand side

depends on µ only via λ(µ), hence

d

d logµ

(

λ(µ) +
∞
∑

k=1

fk(λ(µ))

ǫk

)

=
dλ

d logµ
×

d

dλ

(

· · ·
)

= β(λ(µ))×

(

1 +
∞
∑

k=1

f ′k(λ(µ))

ǫk

)

(23)

where f ′k(λ) is dfk/dλ. On the left hand side of eq. (22), the µ-dependence is explicit but we

don’t know the constant coefficient. Instead, we may obtain it from the eq. (22) itself, thus

d

d logµ

(

const

µ2ǫ

)

= −2ǫ×
same const

µ2ǫ
= −2ǫ×

(

λ(µ) +
∞
∑

k=1

fk(λ(µ))

ǫk

)

(24)

and therefore

−2ǫλ − 2
∞
∑

k=1

fk(λ)

ǫk−1
= β(λ)×

(

1 +
∞
∑

k=1

f ′k(λ)

ǫk

)

. (25)

At this point, let’s treat both sides of eq. (25) as Laurent power series
⋆
in ǫ. On the right

hand side, the beta-function β(λ) depends on the spacetime dimension, so we should treat it

⋆ Unlike the Taylor series which sums up only non-negative powers of some variable, the Laurent series
includes both positive and negative powers. A function f(z) that’s singular at z = 0 but is analytic in
some ring r1 < |z| < r2 in complex z plane can be expanded into a Laurent series in both positive and
negative powers of z.
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as β(λ, ǫ) and expand

β(λ, ǫ) = β0(λ) + ǫ× β1(λ) + ǫ2 × β2(λ) + · · · . (26)

Note that only non-negative powers of ǫ appear in this expansion because the beta-function

does not have a singularity at D = 4. Thus, eq. (22) becomes

−2ǫλ − 2

∞
∑

k=1

fk(λ)

ǫk−1
=

(

∞
∑

n=0

βn(λ)× ǫ+n

)

×

(

1 +

∞
∑

k=1

f ′k(λ)

ǫk

)

, (27)

and the coefficients of similar powers of ǫ should be equal on both sides of this equation. In

particular, since the left hand side does not contain any powers of ǫ greater than +1, the right

hand side should not contain them either, and this can happen only if the expansion (26) for

the beta-functions stops after the linear term,

β(λ, ǫ) = β0(λ) + ǫ× β1(λ) + nothing else. (28)

This fact greatly simplifies eq. (27) — it becomes

−2ǫλ − 2f1 − 2

∞
∑

k=2

fk
ǫk−1

= ǫβ1 + β0 + β1 × f ′1 +

∞
∑

k=2

β1f
′

k

ǫk−1
+

∞
∑

k=1

β0f
′

k

ǫk
, (29)

and now it’s easy to compare similar powers of ǫ on both sides. Starting with ǫ+1 and going

down, we have

β1(λ) = −2λ, exactly, (30)

β0(λ) = −2f1(λ) − β1(λ)× f ′1(λ), (31)

−β1(λ)× f ′2(λ) − 2f2(λ) = β0(λ)× f1(λ), (32)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−β1(λ)× f ′k(λ) − 2fk(λ) = β0(λ)× fk−1(λ). (33)

These formulae give us everything we want to know in terms of the f1(λ) function, which

summarizes the simple poles in the δλ and δZ counterterms according to eq. (19). In particular,
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eqs. (30) and (31) give us the beta-function in any spacetime dimension D = 4− 2ǫ,

β(λ) = (D − 4)× λ +

(

2λ
d

dλ
− 2

)

f1(λ). (34)

Thus, if in the MS regularization scheme

δλ − 2λδZ =
c1λ

2 + c2λ
3 + c3λ

4 + · · ·

ǫ
+ higher poles, (35)

then

β(λ) = (D − 4)× λ + 2c1λ
2 + 4c2λ

3 + 6c3λ
4 + · · · . (36)

As to eqs. (32), etc., they gives us the recursion relations for the fk(λ) functions for the higher

1/ǫk poles with k ≥ 2. Specifically,

(

2λ
d

dλ
− 2

)

fk(λ) = β0(λ)×
dfk−1(λ)

dλ
. (37)

These differential equations completely determine the fk(λ) functions once we impose bound-

ary conditions fk = O(λk+1) for λ → 0.

⋆ ⋆ ⋆

Now consider a generic QFT with several couplings gs(µ), s = 1, . . . , n. Similar to λ(µ),

we make all gs(µ) dimensionless by multiplying them by appropriate powers of µ. Then for

each coupling we have an equation similar to eq. (22):

gs,bare =
const

µ∆s

=
gs(µ) + δgs(µ)
∏

appropriate
fields i

(1 + δZi (µ))
1/2

= gs(µ) +

∞
∑

k=1

1

ǫk
f
(k)
s (g1(µ), . . . , gn(µ)). (38)

On the right hand side here

f
(1)
s (g1, . . . , gn) = coefficient of the simple

1

ǫ
pole of









δgs −
gs
2

∑

appropriate
fields i

δZi









(39)

while the other f
(k)
s depends on the higher-order poles in the counterterms. The specific for-

mulae for the f
(2)
s , etc., in terms of those higher poles are rather complicated, but fortunately

we do not need them at all to calculate all the beta functions.
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On the left hand side of eq. (38), ∆s is the canonical dimensionality of the bare coupling

gs in D = 4 − 2ǫ dimensions. In general, different couplings have different dimensionalities,

but fortunately they are always linear functions of spacetime dimension D and hence of the ǫ,

∆s(ǫ) = ∆
(0)
s + Ks × ǫ, exactly. (40)

Similar to eq. (28), this linearity makes all beta-functions β(ga, . . . , gn; ǫ) exactly linear with

respect to epsilon, which helps us to calculate them in terms of the f
(1)
s functions. Indeed,

taking the derivative of both sides of eq. (38) with respect to log µ we obtain

−(∆
(0)
s + ǫKs)×

(

gs +
∞
∑

k=1

1

ǫk
× f

(k)
s (g1, . . . , gn)

)

= (41)

=

n
∑

p=1

βp(g1, . . . , gn; ǫ)×

[

δp,s +

∞
∑

k=1

1

ǫk
×

∂f
(k)
s (g1, . . . , gn)

∂gp

]

.

And now we treat both sides as Laurent series in powers of ǫ and compare coefficients of

similar powers on both sides. This gives us

βs(g1, . . . , gn; ǫ) = β
(0)
s (g1, . . . , gn) + ǫ× β

(1)
s (g1, . . . , gn) + nothing else, (42)

β
(1)
s (g1, . . . , gn) = −Ks × gs , exactly, (43)

β
(0)
s (g1, . . . , gn) = −∆

(0)
s × gs − Ksf

(1)
s (g1, . . . , gn)

−

n
∑

p=1

β(1)(g1, . . . , gn)×
∂f

(1)
s (g1, . . . , gn)

∂gp
, (44)

plus an infinite series of recursion relations for the f
(2)
s , f

(3)
s , etc., etc. Focusing on the

beta-functions, we find that in any spacetime dimension D,

βs(g1, . . . , gn;D) = −∆s(D)× gs +





n
∑

p=1

Kpgp
∂

∂gp
− Ks



 f
(1)
s (g1, . . . , gn) (45)

where the f
(1)
s (g1, . . . , gn) follow from the simple poles of the counterterms according to

eq. (39). As promised, in the MS regularization scheme, the simple 1/ǫ poles of the appropriate

counterterms completely determine all the beta-functions of the theory.
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⋆ ⋆ ⋆

Instead of the original Minimal Subtraction renormalization scheme (MS), people often

use the Modified Minimal Subtraction scheme (MS, pronounced MS-bar). In this scheme, the

L-loop counterterms are degree-L polynomials — without the free term — in

1

ǭ
def
=

1

ǫ
− γE + log(4π) (46)

instead of 1/ǫ. This modification makes the regularized net amplitudes somewhat simpler

because it subtract the numerical constants that usually accompany the 1/ǫ poles.

There are also DR and DR regularization schemes which are often used in supersymmet-

ric theories. These schemes work similarly to the MS and MS but use a different ‘flavor’

of dimensional regularization called dimensional reduction: all momenta live in D = 4 − 2ǫ

dimensions, but the vector fields keep all 4 components. Physically, such a reduced 4D vector

field comprises one species of a D-dimensional vector plus 2ǫ species of the scalar with the

same mass and charge. Unlike the original ’t Hooft’s dimensional regularization, the dimen-

sional reduction does not break the supersymmetry; apart from that, the difference is usually

unimportant.
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