Introduction to Path Integrals

Consider ordinary quantum mechanics of a single particle in one space dimension. Let's work in the coordinate space and study the evolution kernel

$$
\begin{equation*}
U\left(t_{B}, x_{B} ; T_{A}, x_{A}\right)=\left\langle x_{B}\right| e^{-i\left(t_{B}-t_{A}\right) \hat{H} / \hbar}\left|x_{A}\right\rangle \tag{1}
\end{equation*}
$$

- the amplitude for moving from point x_{A} at time t_{A} to point x_{B} at time t_{B}. In the semi-classical regime, this kernel is given by the WKB approximation

$$
\begin{equation*}
U(B ; A) \approx \text { prefactor } \times \exp \left(i S\left[x_{\mathrm{cl}}(t)\right] / \hbar\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
S[x(t)]=\int_{t_{A}}^{t_{B}} L(x(t), \dot{x}(t)) d t \tag{3}
\end{equation*}
$$

is the action integral of the classical mechanics and $x_{\mathrm{cl}}(t)$ is the classical path from A to $B-$ i.e., $x_{\mathrm{cl}}(t)$ is the minimum of the functional $S[x(t)]$ under conditions $x\left(t_{A}\right)=x_{A}$ and $x\left(t_{B}\right)=x_{B}$. If there are several classical paths from A to B because $S[x]$ has several local minima, then they all contribute to the kernel with appropriate phases and we get interference,

$$
\begin{equation*}
U(B ; A) \approx \sum_{\substack{\text { classical } \\ \text { paths } i}} \operatorname{prefactor}_{i} \times \exp \left(i S\left[x_{i}(t)\right] / \hbar\right) \tag{4}
\end{equation*}
$$

In the exact quantum mechanics, a sum (4) over classical path becomes an integral over all possible path from A to B,

$$
\begin{equation*}
U(B ; A)=\iiint \int_{x\left(t_{A}\right)=x_{A}}^{x\left(t_{B}\right)=x_{B}} \mathcal{D}[x(t)] \exp (i S[x(t)] / \hbar) \tag{5}
\end{equation*}
$$

Note that we integrate over all differentiable functions $x(t)$ that satisfy the boundary condition at t_{A} and t_{B}, and they do not obey any equations of motion except by accident. However, in the semiclassical $\hbar \rightarrow 0$ limit, contribution of most paths is washed out by
interference with similar paths whose action differs by only $O(\hbar)$. The only survivors of this wash-out stationary "points" of the functional $S[x(t)]$, which are precisely the classical paths from A to B. This is how the WKB approximation (4) - and eventually the classical mechanics - emerge in the $\hbar \rightarrow 0$ limit.

The problem with the path integral (5) is how to define the differential $\mathcal{D}[x(t)]$ of a path. Obviously, we should discretize the time: Slice a continuous time interval $t_{A} \leq t \leq t_{B}$ into a large but finite set of discrete times

$$
\begin{equation*}
\left(t_{0}, t_{1}, t_{2}, \ldots, t_{N-1}, t_{N}\right), \quad t_{n}=t_{A}+n \Delta t, \quad \Delta t=\frac{t_{B}-t_{A}}{N}, \quad t_{0}=t_{A}, \quad t_{N}=t_{B} \tag{6}
\end{equation*}
$$

but eventually take the $N \rightarrow \infty$ limit. This gives us

$$
\begin{equation*}
\mathcal{D}[x(t)] \stackrel{\text { def }}{=} \lim _{N \rightarrow \infty} d x_{1} d x_{2} \cdots d x_{N-1} \times \text { normalization_factor } \quad \text { where } \quad x_{n} \equiv x\left(t_{n}\right) . \tag{7}
\end{equation*}
$$

Note that we do not integrate over the $x_{0} \equiv x\left(t_{A}\right)$ and $x_{N} \equiv x\left(t_{B}\right)$ because they are fixed by the boundary conditions in eq. (5).

The non-obvious part of eq. (7) is the normalization factor. We shall see later in these notes that this factor depends on N, on the net time $T=t_{B}-t_{A}$, and even on the particle's mass, and the exact formula for this factor is not easy to guess. Fortunately, there is a different version of path integration that does not suffer from such normalization factors.

Let's consider paths in the phase space (x, p) rather than just the x-space. In other words, let's treat $x(t)$ and $p(t)$ as independent variables and write the action integral (3) in the Hamiltonian language

$$
\begin{equation*}
S[x(t), p(t)]=\int_{A}^{B}[p d x-H(x(t), p(t)) d t] \tag{8}
\end{equation*}
$$

as a functional of both $x(t)$ and $p(t)$. A classical path is a minimax of this functional - a (local) minimum with respect to variations of $x(t)$ but a (local) maximum with respect to variations of $p(x)$. Also, the coordinate $x(t)$ is subject to boundary conditions at the start A
and finish B, but there are no boundary conditions for the momentum $p(t)$. In the quantum mechanics,

$$
\begin{equation*}
U(B ; A)=\iiint \int_{x\left(t_{A}\right)=x_{A}}^{x\left(t_{B}\right)=x_{B}} \mathcal{D}^{\prime}[x(t)] \iiint \mathcal{D}[p(t)] \exp (i S[x(t), p(t)] / \hbar) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{D}^{\prime}[x(t)] \times \mathcal{D}[p(t)]=\lim _{N \rightarrow \infty} \prod_{n=1}^{N-1} d x_{n} \times \prod_{n=1}^{N} \frac{d p_{n}}{2 \pi \hbar} . \tag{10}
\end{equation*}
$$

This time, there are no funny normalization factors: all we have is $1 / 2 \pi \hbar$ for every $d p_{n}$, and that's standard procedure in quantum mechanics. Note that for a given N, we integrate over N momenta but only $N-1$ coordinates because of the boundary conditions on both ends; to make this difference explicit, I have marked the $\mathcal{D}^{\prime}[x(t)]$ with a prime.

Deriving the Phase-Space Path Integral from the Hamiltonian QM

Let's start with a mathematical lemma:

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(e^{\hat{a} / N} \times e^{\hat{b} / N}\right)^{N}=e^{\hat{a}+\hat{b}} \tag{11}
\end{equation*}
$$

even if the operators \hat{a} and \hat{b} do not commute with each other. Proof:

$$
\begin{equation*}
e^{\hat{a} / N} \times e^{\hat{b} / N}=1+\frac{\hat{a}+\hat{b}}{N}+O\left(1 / N^{2}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(1+\frac{\hat{a}+\hat{b}}{N}+O\left(1 / N^{2}\right)\right)^{N}=e^{\hat{a}+\hat{b}} \tag{13}
\end{equation*}
$$

regardless of the details of the $O\left(1 / N^{2}\right)$ terms.
Now consider a quantum particle living in one space dimension with a Hamiltonian operator of the form

$$
\begin{equation*}
\hat{H}=K(\hat{p})+V(\hat{x}) \tag{14}
\end{equation*}
$$

where the kinetic energy $\hat{K} \equiv K(\hat{p})$ does not depend on the position \hat{x} and the potential energy $\hat{V}=V(\hat{x})$ does not depend on the momentum \hat{p}. Using the lemma (11), we may
write the evolution operator for the particle as

$$
\begin{equation*}
\hat{U}\left(t_{B}-t_{A}\right) \equiv e^{-i \hat{H}\left(t_{B}-t_{A}\right) / \hbar}=\lim _{N \rightarrow \infty}\left(e^{-i \hat{V} \Delta t / \hbar} \times e^{-i \hat{K} \Delta t / \hbar}\right)^{N} \tag{15}
\end{equation*}
$$

where $\Delta t=\left(t_{B}-t_{A}\right) / N$ as in eq. (6). Consequently, in the coordinate basis

$$
\begin{equation*}
\left\langle x_{B}\right| \hat{U}\left(t_{B}-t_{A}\right)\left|x_{A}\right\rangle=\lim _{N \rightarrow \infty} \int d x_{1} \cdots \int d x_{N-1} \prod_{n=1}^{N}\left\langle x_{n}\right| e^{-i \hat{V} \Delta t / \hbar} \times e^{-i \hat{K} \Delta t / \hbar}\left|x_{n-1}\right\rangle \tag{16}
\end{equation*}
$$

where we have identified $x_{0} \equiv x_{A}$ and $x_{N} \equiv x_{B}$. Each Dirac bracket in the above product evaluates to

$$
\begin{align*}
\left\langle x_{n}\right| e^{-i \hat{V} \Delta t / \hbar} & \times e^{-i \hat{K} \Delta t / \hbar}\left|x_{n-1}\right\rangle= \\
& =e^{-i V\left(x_{n}\right) \Delta t / \hbar} \times\left\langle x_{n}\right| e^{-i \hat{K} \Delta t / \hbar}\left|x_{n-1}\right\rangle \\
& =e^{-i V\left(x_{n}\right) \Delta t / \hbar} \times \int \frac{d p_{n}}{2 \pi \hbar}\left\langle x_{n} \mid p_{n}\right\rangle e^{-i K\left(p_{n}\right) \Delta t / \hbar}\left\langle p_{n} \mid x_{n-1}\right\rangle \tag{17}\\
& =\int \frac{d p_{n}}{2 \pi \hbar} e^{-i V\left(x_{n}\right) \Delta t / \hbar} \times e^{i x_{n} p_{n} / \hbar} \times e^{-i K\left(p_{n}\right) \Delta t / \hbar} \times e^{-i x_{n-1} p_{n} / \hbar} \\
& =\int \frac{d p_{n}}{2 \pi \hbar} \exp \left[\frac{i}{\hbar}\left(p_{n}\left(x_{n}-x_{n-1}\right)-V\left(x_{n}\right) \Delta t-K\left(p_{n}\right) \Delta t\right)\right] .
\end{align*}
$$

Plugging this formula back into eq. (16) and combining all the exponentials, we arrive at

$$
\begin{equation*}
U(B ; A)=\lim _{N \rightarrow \infty} \int d x_{1} \cdots \int d x_{N-1} \int \frac{d p_{1}}{2 \pi \hbar} \cdots \int \frac{d p_{N}}{2 \pi \hbar} e^{i S / \hbar} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\sum_{n=1}^{N} p_{n}\left(x_{n}-x_{n-1}\right)-\Delta t \times \sum_{n=1}^{N}\left(V\left(x_{n}\right)+K\left(p_{n}\right)\right) \tag{19}
\end{equation*}
$$

is the discretized action for a discretized path. Indeed, in the large N limit

$$
\begin{equation*}
\sum_{n=1}^{N}\left[p_{n} \times\left(x_{n}-x_{n-1}\right)+\left(V\left(x_{n}\right)+K\left(p_{n}\right)\right) \times \Delta t\right] \underset{N \rightarrow \infty}{\longrightarrow} \int_{A}^{B}[p d x-H d t] \equiv S[x(t), p(t)] \tag{20}
\end{equation*}
$$

Consequently, we should interpret the product of coordinate and momentum integrals in
eq. (18) as the discretized integral over the paths in the momentum space,

$$
\begin{equation*}
\int d x_{1} \cdots \int d x_{N-1} \int \frac{d p_{1}}{2 \pi \hbar} \cdots \int \frac{d p_{N}}{2 \pi \hbar} \xrightarrow[N \rightarrow \infty]{ } \iiint \mathcal{D}^{\prime}[x(t)] \iiint \mathcal{D}[p(t)] \tag{21}
\end{equation*}
$$

in perfect agreement with eq. (10). And eq. (18) itself is the proof of the path-integral formula

$$
\begin{equation*}
U(B ; A)=\int_{x\left(t_{A}\right)=x_{A}}^{x\left(t_{B}\right)=x_{B}} \mathcal{D}^{\prime}[x(t)] \iiint \mathcal{D}[p(t)] \exp (i S[x(t), p(t)] / \hbar) . \tag{9}
\end{equation*}
$$

A note on discretization. Interpreting the sum $\sum_{n} p_{n}\left(x_{n}-x_{n-1}\right)$ as the discretized integral $\int p d x$ calls for assigning the momenta p_{n} to mid-point discrete times with respect to the coordinates x_{n} :

$$
\begin{equation*}
x_{n} \equiv x\left(t=t_{A}+n \Delta t\right) \quad \text { but } \quad p_{n} \equiv p\left(t=t_{A}+\left(n-\frac{1}{2}\right) \Delta t\right) . \tag{22}
\end{equation*}
$$

As long as the Hamiltonian can be split into separate kinetic and potential energies according to eq. (14), such different discrete times for the x_{n} and p_{n} are OK because

$$
\begin{equation*}
\int H(x, p) d t=\int V(x) d t+\int K(p) d t \rightarrow \Delta t \sum_{n=1}^{N} V\left(x_{n}\right)+\Delta t \sum_{n=1}^{N} K\left(p_{n}\right) \tag{23}
\end{equation*}
$$

and the details of the discretization do not matter in the large N limit. However, when the classical Hamiltonian is more complicated than a sum of kinetic and potential energies, the path integral formalism suffers from the discretization ambiguity. For example, for

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 M(x)} \tag{24}
\end{equation*}
$$

we could discretize the action as

$$
\begin{align*}
& S \rightarrow \sum_{n} p_{n}\left(x_{n}-x_{n-1}\right)-\Delta t \sum_{n} \frac{p_{n}^{2}}{2 M\left(x_{n}\right)}, \\
& \text { or } \rightarrow \sum_{n} p_{n}\left(x_{n}-x_{n-1}\right)-\Delta t \sum_{n} \frac{p_{n}^{2}}{2 M\left(x_{n-1}\right)}, \tag{25}\\
& \text { or } \rightarrow \sum_{n} p_{n}\left(x_{n}-x_{n-1}\right)-\Delta t \sum_{n} \frac{p_{n}^{2}}{M\left(x_{n}\right)+M\left(x_{n-1}\right)}, \\
& \text { or } \rightarrow \text { something else, }
\end{align*}
$$

all these options lead to different evolution kernels, and there are no general rules how to
resolve such ambiguities. In fact, the discretization ambiguities of the path-integral formalism correspond to the operator-ordering ambiguities of the Hilbert-space formalism of quantum mechanics. For example, given the classical Hamiltonian of the form (24), we can take the quantum Hamiltonian operators to be

$$
\begin{align*}
\hat{H} & =\frac{1}{2 M(\hat{x})} \hat{p}^{2}, \quad \text { or } \hat{H}=\hat{p}^{2} \frac{1}{2 M(\hat{x})}, \quad \text { or } \hat{H}=\hat{p} \frac{1}{2 M(\hat{x})} \hat{p}, \quad \text { or } \\
\hat{H} & =\frac{1}{2 M(\hat{x})} \hat{p} M(\hat{x}) \hat{p} \frac{1}{M(\hat{x})}, \quad \text { or something else? } \tag{26}
\end{align*}
$$

Lagrangian Path Integral

In this section, I shall reduce the Hamiltonian path integrals over both $x(t)$ and $p(t)$ to the Lagrangian path integrals over the $x(t)$ alone by integrating over the paths in momentum space. This works only when the kinetic energy is quadratic in the momentum,

$$
\begin{equation*}
H(p, x)=\frac{p^{2}}{2 M}+V(x) \quad \Longrightarrow \quad \hat{H}=\frac{\hat{p}^{2}}{2 M}+V(\hat{x}) \tag{27}
\end{equation*}
$$

For such Hamiltonians,

$$
\begin{equation*}
p \dot{x}-H(p, x)=p \dot{x}-\frac{p^{2}}{2 M}-V(x)=-\frac{(p-M \dot{x})^{2}}{2 M}+\frac{M \dot{x}^{2}}{2}-V(x)=L(\dot{x}, x)-\frac{(p-M \dot{x})^{2}}{2 M} \tag{28}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
S^{\mathrm{Ham}}[x(t), p(t)]=S^{\mathrm{Lagr}}[x(t)]-\frac{1}{2 M} \int d t(p-M \dot{x})^{2} \tag{29}
\end{equation*}
$$

Therefore, in the path integral formalism,

$$
\begin{align*}
U(B ; A) & =\int_{\int}^{B} \int_{A}^{B} \mathcal{D}^{\prime}[x(t)] \iiint \mathcal{D}[p(t)] \exp \left(\frac{i}{\hbar} S^{\mathrm{Ham}}[x(t), p(t)]\right) \\
& =\int_{\int}^{B} \int_{A} \mathcal{D}^{\prime}[x(t)] \exp \left(\frac{i}{\hbar} S^{\mathrm{Lagr}}[x(t)]\right) \times \iiint \mathcal{D}[p(t)] \exp \left(\frac{-i}{2 M \hbar} \int d t(p-M \dot{x})^{2}\right) . \tag{30}
\end{align*}
$$

On the second line here, we integrate over the coordinate-space paths $x(t)$ after integration over the momentum-space paths $p(t)$, so as far as $\iiint \mathcal{D}[p(t)]$ is concerned, we can treat the
coordinate-space path $x(t)$ as a constant. Also, the path-integral measure is linear so we may shift the integration variable by a constant, thus

$$
\begin{align*}
\iiint \mathcal{D}[p(t)] \exp \left(\frac{-i}{2 M \hbar} \int d t(p-M \dot{x})^{2}\right) & =\iiint \mathcal{D}[p(t)-M \dot{x}(t)] \exp \left(\frac{-i}{2 M \hbar} \int d t(p-M \dot{x})^{2}\right) \\
& =\iiint \mathcal{D}\left[p^{\prime}(t)\right] \exp \left(\frac{-i}{2 M \hbar} \int d t p^{\prime 2}(t)\right) \\
& =\text { const. } \tag{31}
\end{align*}
$$

Plugging this formula back into eq. (30) gives us a Lagrangian path integral

$$
\begin{equation*}
U(B ; A)=\text { const } \times \iiint \int_{x\left(t_{A}\right)=x_{A}}^{x\left(t_{B}\right)=x_{B}} \mathcal{D}^{\prime}[x(t)] \exp \left(\frac{i}{\hbar} S^{\mathrm{Lagr}}[x(t)]\right) . \tag{32}
\end{equation*}
$$

In this formalism there is no independent momentum-space path $p(t)$, we integrate only over the coordinate-space path $x(t)$, and the action is given by the Lagrangian formula (3). However, the price of this simplification is the un-known overall constant multiplying the path integral (32).

To calculate this constant we should first discretize time and only then integrate out the discrete momenta p_{n}. For finite N, the discretized Hamiltonian-formalism action (19) can be written as

$$
\begin{align*}
S_{\mathrm{discr}}^{\mathrm{Ham}}\left(x_{0}, \ldots, x_{N} ; p_{1}, \ldots, p_{N}\right)= & \sum_{n} p_{n}\left(x_{n}-x_{n-1}\right)-\frac{\Delta t}{2 M} \sum_{n} p_{n}^{2}-\Delta t \sum_{n} V\left(x_{n}\right) \\
= & -\frac{\Delta t}{2 M} \sum_{n}\left(p_{n}-M \frac{x_{n}-x_{n-1}}{\Delta t}\right)^{2} \\
& +\frac{M}{2 \Delta t} \sum_{n}\left(x_{n}-x_{n-1}\right)^{2}-\Delta t \sum_{n} V\left(x_{n}\right) \\
= & -\frac{\Delta t}{2 M} \sum_{n}\left(p_{n}-M \frac{x_{n}-x_{n-1}}{\Delta t}\right)^{2}+S_{\mathrm{discr}}^{\mathrm{Lagr}}\left(x_{0}, \ldots, x_{N}\right) \tag{33}
\end{align*}
$$

where

$$
\begin{align*}
S_{\mathrm{discr}}^{\mathrm{Lagr}}\left(x_{0}, \ldots, x_{N}\right)= & \Delta t \sum_{n}\left[\frac{M}{2}\left(\frac{x_{n}-x_{n-1}}{\Delta t}\right)^{2}-V\left(x_{n}\right)\right] \\
& \xrightarrow[N \rightarrow \infty]{\longrightarrow} \int d t\left[\frac{M}{2}\left(\frac{d x}{d t}\right)^{2}-V(x)\right]=S^{\mathrm{Lagr}}[x(t)] \tag{34}
\end{align*}
$$

is the discretized action for of the Lagrangian formalism. In light of eq. (33) we may write the discretized path integral (18) as

$$
\begin{align*}
\int d x_{1} \cdots \int d x_{N-1} \int \frac{d p_{1}}{2 \pi \hbar} \cdots \int \frac{d p_{N}}{2 \pi \hbar} & \exp \left(\frac{i}{\hbar} S_{\mathrm{discr}}^{\mathrm{Ham}}\left(x_{0}, \ldots, x_{N} ; p_{1}, \ldots, p_{N}\right)\right)= \\
=\int d x_{1} \cdots \int d x_{N-1} & \exp \left(\frac{i}{\hbar} S_{\mathrm{discr}}^{\mathrm{Lagr}}\left(x_{0}, \ldots, x_{N}\right)\right) \times \\
& \times \prod_{n=1}^{N} \int \frac{d p_{n}}{2 \pi \hbar} \exp \left(\frac{-i \Delta t}{2 M \hbar}\left(p_{n}-M \frac{x_{n}-x_{n-1}}{\Delta t}\right)^{2}\right) \tag{35}
\end{align*}
$$

where we integrate over all momenta p_{n} before we integrate over the coordinates. Consequently, in each integral on the last line of eq. (35) we may shift the integration variable from p_{n} to $p_{n}^{\prime}=p_{n}-M \Delta x_{n} / \Delta t$, thus

$$
\begin{equation*}
\int \frac{d p_{n}}{2 \pi \hbar} \exp \left(\frac{-i \Delta t}{2 M \hbar}\left(p_{n}-M \frac{x_{n}-x_{n-1}}{\Delta t}\right)^{2}\right)=\int \frac{d p_{n}^{\prime}}{2 \pi \hbar} \exp \left(\frac{-i \Delta t}{2 M \hbar} p_{n}^{\prime 2}\right)=\sqrt{\frac{M}{2 \pi i \hbar \Delta t}} \tag{36}
\end{equation*}
$$

Plugging this formula back into eq. (35), we arrive at the Lagrangian path integral

$$
\begin{align*}
U(B ; A) & =\lim _{N \rightarrow \infty}\left(\frac{M N}{2 \pi i \hbar\left(t_{B}-t_{A}\right)}\right)^{N / 2} \times \int d x_{1} \cdots \int d x_{N-1} \exp \left(\frac{i}{\hbar} S_{\mathrm{discr}}^{\mathrm{Lagr}}\left(x_{0}, \ldots, x_{N}\right)\right) \\
& \equiv \iiint_{\substack{\left.x\left(t_{B}\right)=x_{B}\right)=x_{A}}} \mathcal{D}^{\prime}[x(t)] \exp \left(\frac{i}{\hbar} S^{\mathrm{Lagr}}[x(t)]\right) . \tag{37}
\end{align*}
$$

Note however that in the Lagrangian formalism, the $\mathcal{D}^{\prime}[x(t)]$ is not just the limit of $d^{N-1} x \equiv$ $d x_{1} \cdots d x_{N-1}$ but also includes the normalisation factor

$$
\begin{equation*}
C\left(N, M, t_{B}-t_{A}\right)=\left(\frac{M N}{2 \pi i \hbar\left(t_{B}-t_{A}\right)}\right)^{N / 2} \tag{38}
\end{equation*}
$$

This normalization factor depends on N, on the net time $T=t_{B}-t_{A}$, and on the particle's mass M, but it does not depend on the potential $V(x)$ or the initial and final points x_{A} and x_{B}. Consequently, without discretizing time, a Lagrangian path integral calculation yields the amplitude $U(B ; A)$ up to an unknown overall factor $F(M, T)$. However, we may obtain
this factor by comparing with a similar path integral for a free particle: the overall $F(M, T)$ factor is the same in both cases, and the free amplitude is known to be

$$
\begin{equation*}
U_{\text {free }}(B ; A)=\sqrt{\frac{M}{2 \pi i \hbar T}} \times \exp \left(\frac{i M\left(x_{B}-x_{A}\right)^{2}}{2 \hbar T}\right) \tag{39}
\end{equation*}
$$

Alternatively, all kind of quantities can be obtained from the ratios of path integrals, and such ratios do not depend on the overall normalization of the $\mathcal{D}[x(t)]$; this is the method most commonly used in the quantum field theory.

Partition Function

The partition function of a quantum system with a Hamiltonian \hat{H} is the trace

$$
\begin{equation*}
Z(t) \stackrel{\text { def }}{=} \operatorname{Tr} \hat{U}(t ; 0) \equiv \operatorname{Tr} \exp (-i t \hat{H} / \hbar)=\sum_{\text {eigenvalues } E_{n}} \exp \left(-i t E_{n} / \hbar\right) \tag{40}
\end{equation*}
$$

This time-dependent partition function is related to the temperature-dependent partition function of Statistical Mechanics

$$
\begin{equation*}
Z(\beta)=\operatorname{Tr} \exp (-\beta \hat{H}) \tag{41}
\end{equation*}
$$

via analytical continuation of time t to imaginary values

$$
\begin{equation*}
t \rightarrow i \hbar \beta=\frac{i \hbar}{k_{B} \times \text { Temperature }} \tag{42}
\end{equation*}
$$

In the path integral formalism, the partition function is given by

$$
\begin{equation*}
Z(T)=\int d x U(t, x ; 0, x)=\iiint \int_{x(T)=x(0)} \mathcal{D}[x(t)] e^{i S[x(t)] / \hbar} \tag{43}
\end{equation*}
$$

Note no prime over \mathcal{D} because the paths $x(t)$ are subject to only one boundary condition - periodicity in time, $x(T)=x(0)$. Without discretizing time, the path integral (43) can be calculated up to an overall normalization constant. Consequently, when we extract the Hamiltonian's spectrum $\left\{E_{n}\right\}$ from the partition function $Z(T)$, the multiplicity of all the eigenvalues can be determined only up to some unknown overall factor.

For example, consider a harmonic oscillator with action

$$
\begin{equation*}
S[x(t)]=\frac{M}{2} \int d t\left(\dot{x}^{2}(t)-\omega^{2} x^{2}(t)\right) \tag{44}
\end{equation*}
$$

This action is a quadratic functional of the $x(t)$, and it can be diagonalized via Fourier transform,

$$
\begin{align*}
x(t) & =\sum_{n=-\infty}^{+\infty} y_{n} \times e^{2 \pi i n t / T}, \quad y_{n}^{*}=y_{-n}, \tag{45}\\
S[x(t)] & =\sum_{n=-\infty}^{+\infty} C_{n} y_{n}^{*} y_{n}, \tag{46}\\
C_{n}=C_{-n} & =\frac{M T}{2} \times\left(\left(\frac{2 \pi n}{T}\right)^{2}-\omega^{2}\right) . \tag{47}
\end{align*}
$$

Note that the discrete frequencies $2 \pi n / T$ of the Fourier transform (45) are completely determined by the boundary conditions $x(T)=x(0)$ and have nothing to do with the oscillator's frequency ω. By linearity of the transform (45),

$$
\begin{align*}
\iiint_{\text {periodic }} \mathcal{D}[x(t)] & =\prod_{n=-\infty}^{+\infty} \int d y_{n} \times \text { a constantJacobian } \tag{48}\\
& =J \times \int d y_{0} \prod_{n=1}^{\infty} \int d \operatorname{Re} y_{n} \int d \operatorname{Im} y_{n}
\end{align*}
$$

To be precise, the Jacobian J here depends on T and on the mass M via the normalization of the Lagrangian path integral, but it does not depend on any of the y_{n} variables, and it does not depend on the oscillator's frequency ω.

In terms of the Fourier variables y_{n}, the path integral (43) becomes

$$
\begin{align*}
Z & =J \times \int d y_{0} \prod_{n=0}^{\infty} \int d \operatorname{Re} y_{n} \int d \operatorname{Im} y_{n} \exp \left(\frac{i}{\hbar} S=\frac{i C_{0}}{\hbar} y_{0}^{2}+\sum_{n=1}^{\infty} \frac{2 i C_{n}}{\hbar}\left|y_{n}\right|^{2}\right) \tag{49}\\
& =J \times \sqrt{\frac{\pi i \hbar}{C_{0}}} \times \prod_{n=1}^{\infty} \frac{\pi i \hbar}{2 C_{n}}
\end{align*}
$$

The coefficients C_{n} are spelled out in eq. (47), but it's convenient to rewrite them as

$$
\begin{equation*}
C_{0}=-\frac{M}{2 T} \times(\omega T)^{2}, \quad C_{n>0}=\frac{2 \pi^{2} M n^{2}}{T} \times\left(1-\left(\frac{\omega T}{2 \pi n}\right)^{2}\right) \tag{50}
\end{equation*}
$$

Consequently, the partition function (49) becomes

$$
\begin{equation*}
Z(T)=\frac{F}{(\omega T) \prod_{n=1}^{\infty}\left(1-\left(\frac{\omega T}{2 \pi n}\right)^{2}\right)} \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
F=J \times \sqrt{\frac{2 \pi \hbar T}{i M}} \times \prod_{n=1}^{\infty} \frac{i \hbar T}{4 \pi^{2} M n^{2}} \tag{52}
\end{equation*}
$$

combines all the factors that do not depend on the oscillator's frequency ω. A priori, F could be a function of M or T, but by the non-relativistic dimensional analysis, a dimensionless function $F(M, T, \hbar)$ which does not depend on anything else must be a constant. It is not clear whether this constant is finite or infinite: it contains an infinite product over n that is badly divergent, and the Jacobian J is also badly divergent. To resolve this issue, we need to discretize time and then go through a calculation similar to the above but more complicated; I'll presented in a separate write up you should read as a part of your next homework. For now, just take it without proof that all the divergences cancel out and F is finite.

The remaining infinite product in the denominator of eq. (51) is absolutely convergent, and it may be evaluated just by looking at its poles and zeros. The analytic function

$$
\begin{equation*}
s(x)=\frac{1}{x} \times \prod_{n=1}^{\infty}\left(\frac{1}{1-(x / n)^{2}}=\frac{n}{n-x} \times \frac{n}{n+x}\right) \tag{53}
\end{equation*}
$$

has no zeroes, it has simple poles at all integers (positive, negative, and zero), it does not have any worse-than-pole singularities in the complex x plane, and it does not grow when $x \rightarrow \pm i \infty$. These facts completely determine this function to be

$$
\begin{equation*}
\frac{1}{x} \times \prod_{n=1}^{\infty} \frac{1}{1-(x / n)^{2}}=\frac{\pi}{\sin (\pi x)} \tag{54}
\end{equation*}
$$

where the normalization comes from the residue of the pole at $x=0$. In eq. (51) we have a
similar product for $x=\omega T / 2 \pi$, hence

$$
\begin{equation*}
Z(T)=\frac{\frac{1}{2} F}{\sin (\omega T / 2)} \tag{55}
\end{equation*}
$$

To extract the oscillator's eigenvalues from this partition function, we expand it as

$$
\begin{equation*}
Z(T)=\frac{\frac{1}{2} F}{\sin (\omega T / 2)}=\frac{i F}{e^{i \omega T / 2}-e^{-i \omega T / 2}}=i F \times \sum_{n=0}^{\infty} e^{-i \omega T\left(n+\frac{1}{2}\right)} \tag{56}
\end{equation*}
$$

Comparing this series to eq. (40), we immediately see that the eigenvalues are $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$ and they all have the same multiplicity $i F$. Of course, we all new those facts back in the undergraduate school (if not earlier), but now we know how to derive them in the pathintegral formalism.

