
PHY–396 L. Solutions for homework set #20.

Problem 1(a):

As explained in class, at high momenta p2 ≫ m2 we may approximate the electron’s propagator

as

i

6p−m+ i0
=

i(6p +m)

p2 −m2 + i0
≈

i(6p +m)

p2 + i0
(S.1)

The m2 term in the denominator becomes negligible at high energies, but the m term in the

numerator remains important (for some processes) because it changes the electron helicity (in

the context of propagator× vertex). In other words, at high energies m acts as a valence = 2

coupling between the left and right chiralities of the electron, but its role as a mass is not

important. Consequently, m(E) renormalizes like all the other couplings a QFT.

Specifically, the renormalized mass m(E) is related to the bare mass mb according to

mb =
m(E) + δm(E)

1 + δ2(E)
. (S.2)

Since the bare mass does not depend on the renormalization point, the renormalized mass and

the counterterms satisfy

dm

d logE
= (m+ δm)×

dδ2
d logE

−
dδm

d logE
= (m+ δm)× 2γe −

dδm

d logE
. (S.3)

At the one-loop level this formula simplifies to

dm

d logE
= 2mγ2 −

dδm

d logE
. (S.4)

In QED, the δm counterterm is proportional to the electron’s mass itself,

δm(E) = m× δ̂(E), (S.5)

because for m = 0 the theory has a chiral symmetry which leads to δm = 0. Plugging eq. (S.5)
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into eq. (S.3) we get

dm

d logE
= 2m(1 + δ̂)γe − m

dδ̂

d logE
, (S.6)

or equivalently

dm

d logE
= m× γm(α(E)) (1)

where

γm = 2γe × (1 + δ̂) −
dδ̂

d logE
. (S.7)

In the Minimal Subtraction regularization scheme the counterterms generally look like

δ1(ǫ, α) = δ2(ǫ, α) =
C2(α)

ǫ
+ higher poles,

δ3(ǫ, α) =
C3(α)

ǫ
+ higher poles,

δ̂(ǫ, α) =
Ĉ(α)

ǫ
+ higher poles,

(S.8)

In terms of such counterterms, the anomalous dimension of the electron field Ψ is

γe(α) = −α
d

dα
C2(α) (S.9)

while the anomalous dimension (S.7)of the electron’s mass becomes

γm(α) = α
d

α
(Ĉ − C2). (S.10)
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Problem 1(b):

The δ2 and δm counterterms of QED cancel the divergences of the electron self-energy correction

Σ(6p). At the one-loop level, the self-energy correction comes from a single diagram

(S.11)

which yields

−iΣ1 loop(6p) =

∫

reg

d4k

(2π)4
ieγµ

i

6k+ 6p−me + i0
× ieγν ×

−i

k2 + i0

(

gµν + (ξ − 1)
kµkν

k2

)

. (S.12)

Note that we do not fix the Feynman gauge here but allow for a general gauge parameter ξ for

the photon propagator (2).

For large loop momentum k ≫ p,m we may expand the fermion propagator in powers of

(m−6p)/ 6k,

1

6k+ 6p−m+ i0
=

1

6k + i0
+

1

6k + i0
(m−6p)

1

6k + i0
+

1

6k + i0
(m−6p)

1

6k + i0
(m−6p)

1

6k + i0
+ · · · .

(S.13)

Only the first two terms in this expansion contribute to the UV divergence of the integral (S.12),

thus

Σ1 loop
div (6p) = −ie2

∫

reg

d4k

(2π)4
1

k2 + i0

(

gµν + (ξ − 1)
kµkν

k2

)

×

× γµ

(

1

6k + i0
+

1

6k + i0
(m−6p)

1

6k + i0

)

γν ,

Σ1 loop(6p) = Σ1 loop
div (6p) + finite(p).

(S.14)

On the second line here, we have

γµ

(

1

6k + i0
+

1

6k + i0
(m−6p)

1

6k + i0

)

γν =
γµ 6kγν
k2 + i0

+
γµ 6k(m−6p) 6kγν

[k2 + i0]2
. (S.15)
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Multiplying this expression by the photon propagator (2), we obtain

integrand =
γµ 6kγ

µ

[k2 + i0]2
+

γµ 6k(m−6p) 6kγµ

[k2 + i0]3
+ (ξ − 1)

6k 6k 6k

[k2 + i0]3
+ (ξ − 1)

6k 6k(m−6p) 6k 6k

[k2 + i0]4

=
−2 6k

[k2 + i0]2
+

4mk2 + 2 6k 6p 6k

[k2 + i0]3
+ (ξ − 1)

6k

[k2 + i0]2
+ (ξ − 1)

m−6p

[k2 + i0]2

= (ξ − 3)
6k

[k2 + i0]2
+ (ξ + 3)

m

[k2 + i0]2
+ (1− ξ)

6p

[k2 + i0]2
+ 2

6k 6p 6k

[k2 + i0]3
.

(S.16)

Moreover, in the context of a Lorentz-invariant momentum integral, the first term on the bottom

line here integrates to zero, while in the numerator of the last term kµkν ∼= gµνk2/4 and hence

2 6k 6p 6k = 4(kp) 6k − 2k2 6p ∼= 4 6p×
k2

4
− 2 6pk2 = −k2×6p. (S.17)

Thus,

integrand ∼= (ξ + 3)
m

[k2 + i0]2
+ (1− ξ − 1)

6p

[k2 + i0]2
(S.18)

and therefore

Σ1 loop
div = e2

[

(ξ + 3)m − ξ 6p
]

×

∫

reg

d4k

(2π)4
−i

[k2 + i0]2
. (S.19)

The integral here seems to have both UV and IR divergences in 4 dimensions, but the IR

divergence is an artefact of the 1/ 6k expansion (S.13) which does not work for small momenta.

On the other hand, the UV divergence is genuine,

∫

reg

d4k

(2π)4
−i

[k2 + i0]2
=

+1

16π2
×

(

1

ǫ
+ const or log Λ2 + const

)

, (S.20)

therefore

Σ1 loop(6p) =
e2

16π2
×

[

(3 + ξ)m − ξ 6p
]

×

(

1

ǫ
or log Λ2

)

+ finite(6p). (S.21)

This divergence must be canceled by the QED counterterms δ2 and δm according to

Σnet(6p) = Σloops(6p) + δm − δ2×6p, (S.22)
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hence at the one-loop level

δm = −
α

4π
× (3 + ξ)m×

(

1

ǫ
or log Λ2

)

+ finite, (S.23)

δ2 = −
α

4π
× ξ ×

(

1

ǫ
or log Λ2

)

+ finite. (S.24)

Problem 1(c):

In the MS renormalization scheme the counterterms (S.23) and (S.24) have no finite parts,

δ2 =
1

ǫ
×

−αξ

4π
+ O(α2) (S.25)

and

δm =
1

ǫ
×

−α(3 + ξ)m

4π
+ O(α2m), (S.26)

i.e.,

δ̂ =
1

ǫ
×

−α(3 + ξ)

4π
+ O(α2). (S.27)

Plugging these counterterms into eq. (S.10) we immediately obtain

γm =
α

4π
×

[

−(3 + ξ) + ξ
]

+ O(α2) = −
3α

4π
+ O(α2). (S.28)

Note that the gauge dependence of the δ2 and δm counterterms cancels out and the anomalous

dimension (S.28) of the electron’s mass comes out to be gauge invariant.

Problem 1(d):

Evolution of the renormalized electron’s mass with energy is given by eq. (1). Integrating this
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equation, we obtain

log
me(Mw)

me(me)
=

logMw
∫

logme

γm(α(E)) d logE. (S.29)

At the one-loop level, the anomalous dimension of the mass is given by eq. (S.28), hence

log
me(Mw)

me(me)
≈ −

3

4π

logMw
∫

logme

α(E) d logE. (S.30)

The rest of this exercise is numerics. Between the electron mass scale me = 511 keV and

the weak scale Mw — which we identify with the Z0 mass MZ = 91 GeV — the EM coupling

changes from

α(me) ≈ α(0) ≈
1

137.03
(S.31)

to

α(Mz) ≈
1

129.65
(S.32)

This change is only 5%, so to the first approximation we may ignore it. In other words, we

approximate α ≈ const = 1/135 (average value), which leads to

log
me(Mw)

me(me)
≈ −

3α

4π
× log

MZ

me
≈ −0.067.

Consequently,

me(Mz) ≈ mphys
e × (1− 0.067) = 477 keV. (S.33)
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Problem 3(a):

The difference between a circle and a straight line is that on a circle the path of a particle

going from point x0 to point x′ does not need to be ‘straight’ but may wrap around the whole

circle one or more times. Indeed, let us compare a particle moving on a circle according to x(t)

(modulo 2πR) with a particle moving on an infinite line according to y(t). If the two particles

have exactly the same velocities at all times,

dx

dt
≡

dy

dt
(S.34)

and similar initial positions x0 = y0 (according to some coordinate systems) at time t = 0, then

after time T one generally has

y(T ) = x(T ) + 2πR× n (S.35)

for some integer n = 0,±1,±2,±3, . . . because the x(y) path may wrap around the circle n

times while the y(t) path may not wrap. For example, the two paths depicted below have same

(constant) velocities and begin at y0 = x0 but end at y(T ) = x(T ) + 2πR× 2:

t

y(t)

y0

y(T )

t

x(t) (modulo 2πR)

0

2πR

x0

x(T )

It is easy to see that the paths x(t) (modulo 2πR) and y(t) (modulo nothing) are in one-to-

one correspondence with each other, provided we restrict the initial point y0 of the particle on
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the infinite line to a particular interval of length L = 2πR, say 0 ≤ y0 < 2πR. Consequently,

in the path integral for the particle on the circle

x(t=T )=x′ (modL)
∫∫∫

x(t=0)=x0 (modL)

D′[x(t) (modL)] =

+∞
∑

n=−∞

y(t=T )=x′+nL
∫∫∫

y(t=0)=x0

D′[y(t)] . (S.36)

Furthermore, in the absence of potential energy, the circle path x(t) (modL) and the corre-

sponding ∞ line path y(t) have equal actions

S[x(t) (modL)] = S[y(t)] =

T
∫

0

dt
[

M
2 ẋ

2 = M
2 ẏ

2
]

, (S.37)

and therefore

Ucircle(x
′; x0) =

x(t=T )=x′ (modL)
∫∫∫

x(t=0)=x0 (modL)

D′[x(t) (modL)] eiS[x(t) (modL)]/h̄

=

+∞
∑

n=−∞

y(t=T )=x′+nL
∫∫∫

y(t=0)=x0

D′[y(t)] eiS[y(t)]/h̄

=

+∞
∑

n=−∞

U∞ line(y
′ = x′ + nL; y0 = x0).

(1)

Q.E .D.

Problem 3(b):

For a free particle living on an infinite line the evolution kernel is given by

U∞ line(y
′; y0) =

√

M

2πih̄T
× exp

(

i

h̄
Sclassical =

i

h̄

M(x′ − x0)
2

2T

)

, (3)

hence according to eq. (1), a particle on a circle has kernel

Ucircle(x
′; x0) =

√

M

2πih̄T
×

+∞
∑

n=−∞

exp

(

iM

2h̄T
(x′ − x0 + nL)2

)

. (S.38)
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To evaluate this sum, we use Poisson re-summation formula (2), which gives

+∞
∑

n=−∞

exp

(

iM

2h̄T
(x′ − x0 + nL)2

)

=
+∞
∑

ℓ=−∞

+∞
∫

−∞

dν exp

(

iM

2h̄T
(x′ − x0 + νL)2

)

×e2πiℓν . (S.39)

Rearranging the exponential, we have

iM

2h̄T
(x′−x0+νL)2 + 2πiℓν =

iML2

2h̄T

(

ν +
x′ − x0

L
+

2πℓh̄T

ML2

)

− 2πiℓ
x′ − x0

L
−

ih̄T (2πℓ)2

ML2
,

(S.40)

and therefore

+∞
∫

−∞

dν exp

(

iM

2h̄T
(x′ − x0 + νL)2

)

×e2πiℓν =

√

2πih̄T

ML2
×exp

(

−2πiℓ
x′ − x0

L
−

(2πℓ)2ih̄T

ML2

)

.

(S.41)

Consequently,

Ucircle(x
′; x0) =

√

M

2πih̄T
×

√

2πih̄T

ML2
×

+∞
∑

ℓ=−∞

exp

(

−2πiℓ
x′ − x0

L
−

(2πℓ)2ih̄T

ML2

)

=
1

L

+∞
∑

ℓ=−∞

eip(x
′
−x0)/h̄ × e−iTE/h̄

(S.42)

where

p = −
2πh̄ℓ

L
= −

h̄ℓ

R
and E =

p2

2M
. (S.43)

Problem 3(c): This is obvious from eqs. (S.42) and (S.43).
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