PHY-396 L. Solutions for homework set #20.

Problem 1(a):
As explained in class, at high momenta p? > m? we may approximate the electron’s propagator

as

i _iP+m) i+ m) (S.1)
p—m+i0  p>—m2+i0  p2+i0 '

The m? term in the denominator becomes negligible at high energies, but the m term in the
numerator remains important (for some processes) because it changes the electron helicity (in
the context of propagator x vertex). In other words, at high energies m acts as a valence = 2
coupling between the left and right chiralities of the electron, but its role as a mass is not

important. Consequently, m(FE) renormalizes like all the other couplings a QFT.
Specifically, the renormalized mass m(FE) is related to the bare mass m; according to

m(E) + om(E)

1+ 02(E) (5-2)

my =

Since the bare mass does not depend on the renormalization point, the renormalized mass and

the counterterms satisfy

dm ddoy dom dom
JogE ~ MO X T T dlogE Mo X 2% = T (5:3)
At the one-loop level this formula simplifies to
dm dom
=2 — . 4
dlogE "2 7 JlogE (S:4)
In QED, the §,, counterterm is proportional to the electron’s mass itself,
dm(E) = mx §(E), (S.5)

because for m = 0 the theory has a chiral symmetry which leads to é,, = 0. Plugging eq. (S.5)



into eq. (S.3) we get

dm A do
JogB ~ 21+ — mo T
or equivalently
dm
= E
s = m X m(a(E)
where
A o
= 2 1+9) — .
Tm = 2ex (140 = G F

(8.7)

In the Minimal Subtraction regularization scheme the counterterms generally look like

(e, a) = dole,a) = Cala) + higher poles,

I3(e, ) = + higher poles,

5(6,04) = ) + higher poles,

In terms of such counterterms, the anomalous dimension of the electron field ¥ is

Ye(a) = —Q%CQ(Q)

while the anomalous dimension (S.7)of the electron’s mass becomes

~

ym(a) = a—(C = Cy).

Ol =

(S.10)



Problem 1(b):
The 92 and 9y, counterterms of QED cancel the divergences of the electron self-energy correction

Y(#). At the one-loop level, the self-energy correction comes from a single diagram
(S.11)

which yields

d*k i —i
st oo () — /— ' e x —— (g 4 (e -1 (812
W = e O =m0 O B (g - ) (5:12)

reg

Note that we do not fix the Feynman gauge here but allow for a general gauge parameter ¢ for

the photon propagator (2).

For large loop momentum £ > p, m we may expand the fermion propagator in powers of

(m—=9)/ ¥,

1 1 1 1 1 1 1
Frp-mro Fro gra e o " e Y i (*S"')
13

Only the first two terms in this expansion contribute to the UV divergence of the integral (S.12),

thus

4 v
1 A1 ) kik
Ta W) = e /(27r)4 k2 +40 <gu DT )

reg
1 1 1 (S.14)
X Yy (}é+z‘0 + K0 (m—ﬁ)k—ﬁo) T s

SUoP () = 40P () + finite(p).

On the second line here, we have

(S.15)

(s * e
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Multiplying this expression by the photon propagator (2), we obtain

' Yk Yo K(m— §) fAyH KKK K k(m—p) Kk
integrand = [kQMJr 2.0]2 = [k2+2'0]3 + (5—1)m + (5_1)W
2k 4mk® k2§ pK 4 m—p
SErar T Eeop T VgEeae T Ve
B ¥ m 4 Kok
= e Y C e Y OO e T PR ap
(S.16)

Moreover, in the context of a Lorentz-invariant momentum integral, the first term on the bottom

line here integrates to zero, while in the numerator of the last term k*k” = g"k? /4 and hence

QUPH = Akp) f — 2k* Y = 4]é><%2 — 2¢k* = —k*x ¥ (S.17)
Thus,
integrand = (g+3)m + (1—g—1)m (S.18)
and therefore
Sher = e+ 3m - ¢ x | é:; TR (5.19)

reg

The integral here seems to have both UV and IR divergences in 4 dimensions, but the IR
divergence is an artefact of the 1/ ¥ expansion (S.13) which does not work for small momenta.

On the other hand, the UV divergence is genuine,

dlk i +1 1 ,
/(271-)4 k2 + 40]2 = 162 X (E + const or log A“ + const), (S.20)

reg

therefore

2

S — o 3+ Om = 6] x (S or log?) + fuiveld. (521

This divergence must be canceled by the QED counterterms d2 and 9,, according to

Sret) = SPS(H) 4 5, — dax (S.22)



hence at the one-loop level

1
Sy = —43 X (34 &)m x (— or logAz) + finite, (S.23)
T €
«Q 1 2 .
do = —— x&x | —or logA*) + finite. (S.24)
A €

Problem 1(c):

In the MS renormalization scheme the counterterms (S.23) and (S.24) have no finite parts,

1 —af

2
_ = 2
09 . X e + O(Oé) (S 5)
and
_ 1 —a@B+m 2
Om = - % y + O(a™m), (5.26)
i.e.,

A 1>< —a(3+¢)

o = + O(a?). (S.27)

€ 47

Plugging these counterterms into eq. (S.10) we immediately obtain

= X [FB4+8 + €] + 0@ = - + 0(?). (5.28)

Note that the gauge dependence of the d2 and 6, counterterms cancels out and the anomalous

dimension (S.28) of the electron’s mass comes out to be gauge invariant.

Problem 1(d):

Evolution of the renormalized electron’s mass with energy is given by eq. (1). Integrating this



equation, we obtain

log M.,
me(My) B
log me(me) /vm(a(E))dlogE. (5.29)
log me

At the one-loop level, the anomalous dimension of the mass is given by eq. (S.28), hence

log M.,

meMw) 3 [ By diog B (S.30)

me(me) El
0g Me

The rest of this exercise is numerics. Between the electron mass scale m, = 511 keV and
the weak scale M,, — which we identify with the Z° mass M, = 91 GeV — the EM coupling
changes from

a(me) ~ a(0) ~ 13703 (S.31)

to

1

(M) ~ 15955

(S.32)

This change is only 5%, so to the first approximation we may ignore it. In other words, we

approximate « & const = 1/135 (average value), which leads to

M, 3 M
logM ~ -2 x log —Z a —0.067.
m€<m€) 4T Me
Consequently;,
me(M,) ~ mP™S x (1 —0.067) = 477 keV. (S.33)



Problem 3(a):

The difference between a circle and a straight line is that on a circle the path of a particle
going from point g to point =’ does not need to be ‘straight’ but may wrap around the whole
circle one or more times. Indeed, let us compare a particle moving on a circle according to z(t)
(modulo 27 R) with a particle moving on an infinite line according to y(t). If the two particles

have exactly the same velocities at all times,
- = (S.34)

and similar initial positions zg = yo (according to some coordinate systems) at time ¢ = 0, then

after time 7" one generally has
y(T) = =(T) + 2rR xn (S.35)

for some integer n = 0,41, 42,43, ... because the z(y) path may wrap around the circle n

times while the y(¢) path may not wrap. For example, the two paths depicted below have same

(constant) velocities and begin at yp = zo but end at y(7) = z(T) + 27R x 2:

(t)

Aa:(t) (modulo 27 R)
2rR

__________________)@

It is easy to see that the paths z(t) (modulo 27 R) and y(t) (modulo nothing) are in one-to-

one correspondence with each other, provided we restrict the initial point yg of the particle on



the infinite line to a particular interval of length L = 27 R, say 0 < yg < 2nR. Consequently,
in the path integral for the particle on the circle

z(t=T)=z" (mod L) y(t=T)=x'+nL

/ Dla(t) (mod L)) = 3 / D'ly(t)]. (S.36)

z(t=0)=xzo (mod L) y(t=0)=x0

Furthermore, in the absence of potential energy, the circle path z(t) (mod L) and the corre-

sponding oo line path y(¢) have equal actions

T
Ste(o) mod )] = (0] = [ [ = Y57, (5.87)
0

and therefore

2(t=T)=2' (mod L)

Ucirele ('3 70) = D'[x(t) (mod L)] ¥S[z(t) (mod L)]/h
2(t=0)=x0 (mod L)

y(t=T)=2'+nL

400
_ / D[y ()] SO/ (1)
"TT0 Y (t=0)=m
+o00
= Z Uooline(y/ =1 + nlL;yg = 1‘0).

Q.ED.

Problem 3(b):

For a free particle living on an infinite line the evolution kernel is given by

i M(x' — xp)?
Umline(y/;y0> = u)’

1
X exp ﬁsclassical = ﬁ oT

2mihT

hence according to eq. (1), a particle on a circle has kernel

UCII‘Cle ' 1'0 \/ 27TZ77,T Z €xXp (277,T 2 _$0+TLL) ) (838)




To evaluate this sum, we use Poisson re-summation formula (2), which gives

Z /du exp <;% (2 —z0+vL) ) 2™t - (S.39)

f=—o00_

+0o0
1M
— L
E exp(th(:c x0+n))

n=—oo

Rearranging the exponential, we have

iM , iML? v —xg  27lhT o' —xg  iRT(2n0)?
oiT @~ D) + 2mily = —or <”+ I Mz ) -2l — e
(S.40)
and therefore
+o00 iM orihT / 9 EQTLT
/dl/ exp (2hT (2 —x9+vL) ) p2mity ;;Lz X eXp <_2m,€x 2370 B %)
—00
(S.41)
Consequently,
M omihT <X ' — x (270)%ihT
. _ .
Ucircle(2'; T0) = il T X MIZ X Z exp (-27”5 7 - 2 )
=—00
1 +00 (8.42)
_ E ezp(x zo)/h < e {TE/h
f=—00
where
2he ht p?
p = L T "R and F = o (S.43)

Problem 3(c): This is obvious from egs. (5.42) and (S.43).



