QED Vertex Correction: Working through the Algebra

At the one-loop level of QED, the 1PI vertex correction comes from a single Feynman

diagram
(1)
thus
d*k  —ig"? [ i
. W / _ . ) 1
zeFllOOp(p p) = /—(%)4 240 X 1€y X J+ K —m+i0 X eyt x Km0 X 1e7Y)
reg
5 / dk N©
= e —_—
(2m)* D
reg
(2)
where
N = A (4o +m)y -+ 5+ m)y (3)
and

D = [K*4i0] x [(p+ k)? —m? +i0] x [(p/ + k)* —m? +i0].

Using Feynman parameter trick, we re-write the denominator as
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and then expand
(p+ k)2 —m?) + y((p + k) —m?) + 2(k*) = 2 - A

where

(= Fk+ap+yp

and

A = (zp+yp)? + z(m®* —p*) + y(m* —p?).

Using k2 = (p' — p)? = p? + p'? — 2pp/, we obtain

(zp+yp')? = z(@z+9)p* + ylx+y)p? — ayk’

and hence

A = (1-2%m? — zz(p® —m?) — yz(p? —m?) — xyk®.

For the on-shell electron momenta p and p’, this expression simplifies to

A = (1-2)*m? — zy¢®> ((on shell)).

Altogether, we have
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and now we need to simplify the numerator (3) in the context of this monstrous integral.

The first step is obvious: Let us get rid of the v¥ and =, factors using the v matrix algebra,

eg., VW v, = —2 g, etc.. However, in order to allow for the dimensional regularization, we



need to re-work the algebra for an arbitrary spacetime dimension D where v"~, = D # 4.

Consequently,
Vdv = =24 + (4— D)4,
Vil = 4(ab) — (4—D)dp, (13)
VdYtn = —24¥d + (4= D)dys,

and therefore

N = —2mP# + dm(p' +p+2k)" — 200+ )y W+ K) + (4— D)@+ f—m)y" @+ k—m).
(14)

Next, we re-express this numerator in terms of the loop momentum ¢ rather than k using

eq. (7). Expanding the result in powers of ¢, we get quadratic, linear and ¢(—independent
terms, but the linear terms do not contribute to the [ dP¢ integral because they are odd
with respect to ¢ — —/ while everything else in that integral is even. Consequently, in the

context of eq. (12) we may neglect the linear terms, thus
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Now, let make use of the external fermions being on-shell. This means more than just

p? = p'? = m?: Effectively, we sandwich the vertex ieI between Dirac spinors @(p’) on



the left and u(p) on the right. The two spinors satisfy the appropriate Dirac equations

pu(p) = mu(p) and a(p’) ¥ = a(p’)m, so in the context of @(p )T u(p),

Axy =2 Axm and Y xB = mxB

(16)

for any terms in I'* that look like Ax ¢ or ' x B for some A or B. Consequently, the terms

on the last two lines of eq. (15) are equivalent to

Y+ @-D)DV G+ A=y d) = (m+(@—1) 0" (zm+(1-y)d)
Y +ad—m)"(zp—yd—m) = ((z-m+zf)7"((z—m—y4).
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Let us combine these two expressions with respective coefficients —2 and 4 — D (cf. eq. (15))

and group similar terms together. Making use of

" = ¢ + i0c"q and ¢ = ¢" — i0c"q,

we obtain
m2yHx (-222 44— D)1 - 2)2)
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and hence
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Furthermore, in the context of the Dirac sandwich u(p’ )" u(p) we have
'l o= 20" — P = = (21)
because u(p') gu(p) = 0, and also the Gordon identity
@ +p) = 2myt — ot (22)
Therefore, re-grouping terms and making use of x + y + z = 1, we obtain
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+ mgh x (x—y)<4— 2 — (4— D)(1— z)).
(23)
To further simplify this expression, let us go back to the symmetries of the integral (12).
The integral over the Feynman parameters, the integral [ dP¢, and the denominator (12— AP
are all invariant under the parameter exchange = < y. In eq. (23) for the numerator, the first
two lines are invariant under this symmetry, but the last line changes sign. Consequently,

only the first two lines contribute to the integral (12) while the third line integrates to zero

and may be disregarded.

Finally, thanks to the Lorentz invariance of the [ dP ¢ integral,
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and hence
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Plugging this formula into eq. (23) and grouping terms according to their y—matrix structure,



we arrive at

NE = Nix AP — N x i”;;q” (26)
where
N = (D;# x (2 4 (82—2(1+z2)+(4—D)(1—z)2> X >
~ (20 +ay) — (4= D)ay) x ¢
:%xﬁ—(D—z)xA+2zx(2m2—q2), (27)
Ny = (1—z)<4z+2(4—D)(1—z)) x m?. (28)

Note that splitting the numerator according to eq. (26) is particularly convenient for calcu-

lating the electron’s form factors:
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Electron’s Gyromagnetic Moment
As explained earlier in class, electron’s spin couples to the static magnetic field as
~ —eg
H > 398 B where g =2 (Fmag - +F2) o (32)
The electric form factor Fy = F,; for ¢*> = 1 is constrained by the Ward identity,
Fltot — 1tree + F1100pS + Flcounter—terms 1. (33)
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Therefore, the gyromagnetic moment is
g =2+ 2R(¢*=0) (34)

where Fy = FQIOOpS because the there are no tree-level or counter-term contributions to the
Fy, only to the Fy. Thus, to calculate the ¢ — 2 at the one-loop level, all we need is to
evaluate the integral (31) for ¢* = 0.

Let’s start with the momentum integral
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where A = (1 — 2)?m? for ¢> = 0 and A3 is as in eq. (28). Because the numerator here
does not depend on the loop momentum /¢, this integral converges in D = 4 dimensions and
there is no need for dimensional regularization. All we need is to rotate the momentum into

Euclidean space,
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Substituting this formula into eq. (31), we have
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The integrand here depends on z but not on the other two Feynman parameters, so we can



immediately integrate over x and y and obtain
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Consequently,
1loop, 2 e2 / 4z 2 o
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and the gyromagnetic moment is
9 =2+ =+ 0 (40)

Higher-loop calculations are more complicated because the number of diagrams grows
very rapidly with the number of loops; at 4-loop order there are thousands of diagrams,
and one needs a computer just to count them! Also, at higher orders one has to include
effects strong and weak interactions because photons interact not just with electrons and
other charged leptons, but also with hadrons and W# particles, which in turn interact with
other hadrons, Z°, Higgs, etc., etc. Nevertheless, people have calculated the electron’s and
muon’s g factors up to order o back in the 1970s, and more recent calculations are good up
to a® order. Meanwhile, the experimentalists have measured g, to a comparable accuracy of

12 significant digits and g, to 9 significant digits
ge = 2.0023193043617(15), gu = 2.0023318416(12). (41)

The theoretical value of g, is in good agreement with the experimental value, while for the
muon there is a small discrepancy g, " — gzheory ~ (58 £ 13+ 12) - 10710, This discrepancy
indicates some physics beyond the Standard Model, maybe supersymmetry, maybe some-
thing else. In general, effect of heavy particles on g, is proportional to (m,,/ Mheavy)2, that’s

why g, is much more sensitive to new physics than ge.



I would like to complete these notes by calculating F21 lOOp(qz) for ¢> # 0. Proceeding as

in eq. (36) but letting A = (1 — 2)?m? — zyq?, we have
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and hence
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To evaluate this integral over Feynman parameters, we change variables from z,y, 2z to w =

1—zand & =z/(z+y),

r=wé y=w(l-¢), z=1-w, dedydzd(z+y+2z—1) = wdwdf. (44)

Consequently,
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For ¢ < 0 and —¢? > m?,
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