
Electric Form Factor

Now consider the electric form factor F1(q2). Let’s start by calculating the momentum

integral in eq. (30). This time, the numerator N1 depends on ! as a!2 + b and there is a

logarithmic divergence for ! → ∞; to regularize this divergence, we work in D = 4 − 2ε

dimensions. Thus,

−2i

∫

reg

d4!

(2π)4
a!2 + b

[!2 − ∆ + i0]3
≡ −2iµ4−D

∫

dD!

(2π)D
a!2 + b

[!2 − ∆ + i0]3
=

= −2iµ4−D
∫

idD!E
(2π)D

−a!2E + b

−[!2E + ∆]3

= µ4−D
∫

dD!E
(2π)D

(a!2E − b) ×





2

[!2E + ∆]3
=

∞
∫

0

dt t2 e−t(!2E+∆)





=

∞
∫

0

dt t2e−t∆ × µ4−D
∫

dD!E
(2π)D

[

(a!2E − b)e−t!2E =

(

−a
∂

∂t
− b

)

e−t!2E

]

=

∞
∫

0

dt t2e−t∆

(

−a
∂

∂t
− b

)

µ4−D

(4π t)D/2

=
µ4−D

(4π)D/2

∞
∫

0

dt e−t∆ ×
(

a × D
2 t1−(D/2) − b × t2−(D/2)

)

=
µ4−D

(4π)D/2

{

a × D
2 Γ

(

2 − D
2

)

× ∆
D
2 −2 − b × Γ

(

3 − D
2

)

× ∆
D
2 −3

}

→
(4πµ)ε

16π2
×

Γ(1 + ε)

∆ε
×

{

2 − ε

ε
× a −

b

∆

}

.

(47)

In light of eq. (27),

a =
(D − 2)2

D
, b = 2z × (2m2 − q2) − (D − 2) × ∆, (48)

so on the last line of eq. (47)

2 − ε

ε
×a −

b

∆
=

2 − ε

ε
×

2(1 − ε)2

2 − ε
−

2z(2m2 − q2)

∆
+ (2−2ε) =

2(1 − ε)

ε
−

2z(2m2 − q2)

∆
.

(49)
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Consequently, the momentum integral in eq. (30) for the electric form factors evaluates to

−2ie2µ4−D
∫

dD!

(2π)D
N1

[!2 − ∆ + i0]3
= (50)

=
α

4π

(

4πµ2

∆

)ε {

Γ(ε) × 2(1 − ε) − Γ(1 + ε) ×
2z × (2m2 − q2)

∆

}

,

and now we need to integrate this expression over the Feynman parameters.

Changing the integration variables from x, y, z to w and ξ according to eq. (44), we have

F 1 loop
1 (q2) =

α

4π
(4πµ2)ε

1
∫

0

dξ

1
∫

0

dw w ×















2(1 − ε)Γ(ε) ×
1

[∆(w, ξ)]ε

− 2Γ(1 + ε) ×
(1 − w)(2m2 − q2)

[∆(w, ξ)]1+ε















(51)

where

∆(w, ξ) = (1 − z)2m2 − xyq2 = w2 ×
(

m2 − ξ(1 − ξ)q2
)

, (52)

or equivalently,

∆(w, ξ) = w2 × H(ξ) where H(ξ)
def
= m2 − ξ(1 − ξ)q2. (53)

The form (53) is particularly convenient for evaluating the
∫

dw integral in eq. (51), which

becomes

1
∫

0

dw

{

2(1 − ε)Γ(ε)

Hε ×
w

w2ε − 2Γ(1 + ε) ×
2m2 − q2

H1+ε ×
w(1 − w)

w2+2ε

}

. (54)

Near the lower limit w → 0, the integrand is dominated by the second term, which is

proportional to w−1−2ε. But for any ε ≥ 0 — i.e., for any dimension D ≤ 4 — the integral

positive
∫

0

dw
1

w1+2ε (55)

diverges: For D = 4 this divergence is logarithmic while for D < 4 it becomes power-like.
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Physically, this divergence is infrared rather than ultraviolet, that’s why it gets worse

as we lower the dimension D. Indeed, let’s go back to the diagram (1) and look at the

denominator D in eqs. (2) and (4). Taking the electron’s momenta p and p′ on-shell before

introducing the Feynman parameters, we have

(p + k)2 − m2 = k2 + 2kp and likewise (p′ + k)2 − m2 = k2 + 2kp′. (56)

Consequently, for k → 0, the denominator behaves as D ∝ k4 while the numerator N µ

remains finite, and the integral

∫

dDk
N µ

D
∝

∫

dDk
1

k4
(57)

diverges for k → 0. In D = 4 dimensions, the infrared divergence here is logarithmic, while

in lower dimensions D < 4 it becomes power-like, i.e. O
(

(1/kmin)4−D
)

— precisely as in

eqs. (55) and (54).

We can regularize the infrared divergence (57) — and also (55) — by analytically contin-

uing spacetime dimension to D > 4. Such dimensional regularization of an IR divergence is

used in many situations in both QFT and condensed matter. However, taking D > 4 makes

the ultraviolet divergences worse, so if some amplitude has both UV and IR divergences,

we cannot cure both of them at the same time by analytically continuing to D )= 4. In

particular, when calculating the electric form factor F1(q2) of the electron, we need D < 4

to regulate the momentum integral
∫

dD!, but then we need D > 4 to regulate the integral

over the Feynman parameters.

A common dirty trick is to first continue to D < 4 and evaluate the
∫

dD! momentum

integral, then analytically continue the result to D > 4 and integrate over the Feynman

parameters, and then continue the final result to D = 4. However, in this kind of dimen-

sional regularization its hard to disentangle the 1/ε poles coming from the UV divergence

log(Λ2/µ2) from the 1/ε poles coming from the IR divergence log(µ2/k2
min), so we are not

going to use it here.
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Instead, we are going to use DR for the UV divergence only and regulate the IR di-

vergence by giving the photon a tiny mass m2
γ * m2

e. Strictly speaking, a massive vector

particle has three polarization states and its propagator is

=
−i

k2 − m2
γ + i0

×

(

gµν −
kµkν

m2
γ

)

. (58)

However, the longitudinal polarization of the massive but ultra-relativistic photon does not

couple to a conserved current, so we are going to disregard the kµkν terms in the propaga-

tor (58) and use

=
−igµν

k2 − m2
γ + i0

. (59)

In other words, we use the Feynman gauge despite of the photon’s mass; this is not completely

consistent, but the inconsistencies go away in the mγ → 0 limit.

Using this infrared regulator for the internal photon line in the one-loop diagram (1),

we get the vertex amplitude that looks exactly like eq. (2) except for one factor in the

denominator,

1

k2 + i0
becomes

1

k2 − m2
γ + i0

. (60)

In terms of the integral (12), this change has no effect on the numerator N µ or the loop

momentum ! (which remains exactly as in eq. (7)), but the ∆ in the denominator becomes

∆′(x, y, z) = ∆(x, y, z) + z × m2
γ . (61)

Consequently, the electric form factor is

F 1 loop
1 (q2) =

∫

d(FP )

∫

µ4−D dD!

(2π)D
−2ie2 ×N1

[!2 − ∆′ + i0]3
, (62)

exactly as in eq. (30) except for ∆′ instead of ∆ in the denominator. The momentum integral

here converges for any D < 4 and it evaluates exactly as in eq. (47). The only subtlety here
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is that in the numerator, the !–independent term b involves the un-modified ∆ instead of ∆′

(cf. eq. (48)), but we can fix that by writing

b = 2z ×
(

2m2
e − q2 + (1 − ε)m2

γ

)

− 2(1 − ε) × ∆′. (63)

Hence, instead of eq. (51), we get

F 1 loop
1 (q2) =

α

4π
(4πµ2)ε

1
∫

0

dξ

1
∫

0

dw w ×















2(1 − ε)Γ(ε) ×
1

[∆′(w, ξ)]ε

− 2Γ(1 + ε) ×
(1 − w)(2m2

e − q2 + (1 − ε)m2
γ)

[∆′(w, ξ)]1+ε















(64)

where

∆′(w, ξ) = (1 − z)2m2
e − xyq2 + zm2

γ = w2 × H(ξ) + (1 − w) × m2
γ . (65)

Note that the photon’s mass is tiny, m2
γ * m2

e, q
2; were it not for the IR divergences, we

would have used m2
γ = 0. This allows us to neglect various O(m2

γ) terms in eq. (64) except

when it would cause a divergence for w → 0; in particular, we may neglect the (1−ε)m2
γ term

in the numerator of the second term in the integrand. As to the denominators, in eq. (65)

the second term containing the photon’s mass becomes important only in the w → 0 limit,

and in that limit (1 − w)m2
γ → m2

γ . Thus, we approximate

∆′(w, ξ) ≈ w2 × H(ξ) + m2
γ (66)
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and the
∫

dw integral in eq. (64) becomes

1
∫

0

dw w ×

{

2(1 − ε)Γ(ε) ×
1

[w2H(ξ) + m2
γ ]ε

− 2Γ(1 + ε) ×
(1 − w)(2m2

e − q2)

[w2H(ξ) + m2
γ ]1+ε

}

=
2(1 − ε)Γ(ε)

Hε ×

1
∫

0

dw w

[w2 + (m2
γ/H)]ε

+ 2Γ(1 + ε)
2m2

e − q2

H1+ε
×

1
∫

0

dw w2

[w2 + (m2
γ/H)]1+ε

− 2Γ(1 + ε)
2m2

e − q2

H1+ε ×

1
∫

0

dw w

[w2 + (m2
γ/H)]1+ε .

(67)

For 0 < ε < 1
2 — i.e., for 3 < D < 4 — the integrals on the second and third lines here

converge even for m2
γ = 0,

1
∫

0

dw w

[w2]ε
=

1

2 − 2ε
for ε < 1,

1
∫

0

dw w2

[w2]1+ε
=

1

1 − 2ε
for ε < 1

2 ,

(68)

so we may just as well evaluate them without the photon’s mass. Only on the last line of

eq. (67) we do need m2
γ )= 0 to make the integral converge for some D ≤ 4:

1
∫

0

dw w

[w2 + (m2
γ/H)]1+ε

=
−1

2ε

1

[w2 + (m2
γ/H)]ε

∣

∣

∣

∣

1

0

=
1

2ε

[(

H

m2
γ

)ε

− 1

]

. (69)
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Combining all these
∫

dw integrals together, we get

1
∫

0

dw
{

· · ·
}

=
Γ(ε)

Hε
+

2Γ(1 + ε)

1 − 2ε
×

2m2
e − q2

H1+ε
−

Γ(1 + ε)

ε
×

2m2
e − q2

H1+ε
×

[(

H

m2
γ

)ε

− 1

]

=
Γ(ε)

Hε ×

{

1 +
2m2

e − q2

H
×

[

1

1 − 2ε
−

(

H

m2
γ

)ε]}

(70)

and hence

F 1 loop
1 (q2) =

α

4π

1
∫

0

dξ Γ(ε)

(

4πµ2

H(ξ)

)ε

×

{

1 +
2m2

e − q2

H(ξ)
×

[

1

1 − 2ε
−

(

H(ξ)

m2
γ

)ε]}

(71)

where

H(ξ) = m2
e − ξ(1 − ξ)q2. (53)

Before we even try to perform this last integral, let’s remember that

Γµ
net = γµ

tree + Γµloops + δ1 × γµ (72)

and hence

F net
1 (q2) = 1tree + F loops

1 (q2) + δ1 . (73)

Also, there is no renormalization of the net charge, so

F net
1 (q2) → 1 for q2 → 0 (74)

and hence

δ1 = −F loops
1 (q2 = 0). (75)

To calculate the counterterm δ1 to order α we use eq. (71) for q2 = 0, in which case H(ξ) ≡ m2
e
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and the
∫

dξ becomes trivial (the integrand does not depend on ξ at all). Thus,

δ1 = −
α

4π
Γ(ε)

(

4πµ2

m2
e

)ε

×

{

1 +
2

1 − 2ε
− 2

(

m2
e

m2
γ

)ε}

+ O(α2). (76)

This formula holds for any dimension D between 3 and 4 (i.e., 0 < ε < 1
2). In the D → 4

limit, it becomes

δ1 = −
α

4π
×

{

1

ε
− γE + log

4πµ2

m2
e

+ 4 − 2 log
m2

e

m2
γ

}

+ O(α2). (77)

Now let’s go back to the electric form factor F net
1 (q2) for q2 )= 0. According to eqs. (73)

and (75), at the one-loop level

F net
1 (q2) − 1 = F 1 loop

1 (q2) − F 1 loop
1 (0) + O(α2) (78)

where F 1 loop
1 (q2) is given by eq. (71). Taking the ε→ 0 limit of that formula, we arrive at

F 1 loop
1 (q2) =

α

4π

1
∫

0

dξ

{

1

ε
− γE + log

4πµ2

H(ξ)
+

2m2
e − q2

H(ξ)
×

[

2 − log
H(ξ)

m2
γ

]}

, (79)

and now we should subtract a similar a similar expression for q2 = 0. This subtraction

cancels the UV divergence and the associated 1/ε pole but not the IR divergence. Moreover,

not only the subtracted one-loop amplitude depends on the IR regulators, but the coefficient

of the log m2
γ has a non-trivial momentum dependence. Indeed,

F 1 loop
1 (q2) − F 1 loop

1 (0)

=
α

4π

1
∫

0

dξ

{

log
m2

e

H(ξ)
+

2m2
e − q2

H(ξ)
×

[

2 − log
H(ξ)

m2
γ

]

− 2

[

2 − log
m2

e

m2
γ

]}

=
α

4π
×

{

−fIR(q2/m2
e) × log

O(m2
e or q2)

m2
γ

+ a finite function(q2/m2
e)

}

(80)

where ‘a finite function’ means a function of q2/m2
e which remains finite when we remove
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the IR regulator and set the photon’s mass to zero, and

fIR(q2/m2
e) =

1
∫

0

dξ

(

2m2
e − q2

H(ξ)
− 2 =

−q2 × (1 − 2ξ + 2ξ2)

m2
e − q2 × ξ(1 − ξ)

)

(81)

is the same function that governs the soft-photon bremsstrahlung. In terms of §6.1 of the

Peskin & Schroeder textbook,

fIR(q2/m2
e) = I(v,v′) =

∫

d2Ωn

4π

[

−

(

p′µ

(np′)
−

pµ

(np)

)2
]n0=|n|=1

, (82)

see textbooks eqs. (6.69–70) for the proof.

Note: my definition of the FIR differs from the textbook’s by a factor of 2.

Altogether, the electric form factor of the electron is

F net
1 (q2) = 1 −

α

4π
×

{

fIR(q2/m2
e) × log

O(m2
e or q2)

m2
γ

+ finite(q2/m2
e)

}

+ O(α2). (83)

Implications of this formula will be discussed in class; see also §6.4 of the textbook.
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