
Conformal and Superconformal Symmetries

The conformal symmetry group is generated by the following operators:

1. The momenta Pµ = i∂µ generate spacetime translations,

exp(iaµP
µ)Xλ exp(−iaµPµ) = Xλ − aλ. (1)

2. The angular momenta Jµν = XµP ν − XνPµ + Sµν generate rotations of space and

Lorentz boosts,

exp( i2rµνJ
µν)Xλ exp(− i

2rµνJ
µν) = LλρX

ρ, L∗∗ = exp(r∗∗) ∈ SO+(1, 3). (2)

3. The dilatation operator D = XµPµ +Dintrinsic generates uniform rescaling

exp(icD)Xλ exp(−icD) = e−cXλ, exp(icD)Φ(X) exp(−icD) = ec∆ × Φ(ecX).

(3)

4. Finally, the special conformal operators Kµ = −2XµD+X2Pµ+2SµνXν generate the

“inverted translations” (translations of the inverted spacetime coordinates Xλ/X2),

exp(iαµK
µ)Xλ exp(−iαµKµ) =

Xλ − (X2)αλ

1− 2(ανXν) + α2X2
,

i. e., exp(iαµK
µ)

(
Xλ

X2

)
exp(−iαµKµ) =

(
Xλ

X2

)
− αλ.

(4)

Note: The sign conventions I used above are for the Minkowski spacetime with signature

(+−−−). In the Euclidean space, some signs are different, for example Pµ = −i∂µ (instead

of Pµ = +i∂µ).
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The commutator algebra of the conformal generators includes the usual Poincaré algebra

for the Lorentz and translation generators

[Jµν , J
ρ,σ] = iδ

[ρ
[µ
J
σ]
ν]
, [Jµν , P

λ] = iδλ[µ Pν]
, [Pµ, P ν ] = 0. (5)

We also have

[Jµν , K
λ] = iδλ[µKν]

, [Jµν , D] = 0 (6)

because Kλ is a 4–vector while D is a 4–scalar,

[D,P λ] = −iP λ, [D,Kλ] = +iKλ (7)

because the momenta have scaling dimension +1 while the special conformal generators Kµ

have dimension −1, and finally

[Kµ, Kν ] = 0, [Kµ, P ν ] = 2igµνD + 2iJµν . (8)

The Lie algebra of the commutation relations (5)–(8) is SO(2, 4), a Lorentz-like symme-

try of four space and two time coordinates. To see how this works, let’s define Jab = −Jba

for a, b = −1, 0, . . . , 4 according to

the usual Jµν for µ, ν = 0, 1, 2, 3,

J4µ = −Jµ4 =
Pµ +Kµ

2
,

J−1,µ = −J4,−1 =
Pµ −Kµ

2
,

J4,−1 = −J−1,4 = D.

(9)

In terms of Jab, the commutators (5)–(8) become

[Jab, Jcd] = −igbcJad − igacJbd − igbdJac + igadJbc (10)

provided we extend the metric matrix from 4 to 6 dimensions according to

diagonal g−1,−1 = g0,0 = +1, g4,4 = g1,1 = g2,2 = g3,3 = −1,

off-diagonal ga,b = 0 for a 6= b. (11)

In other words, the Ja,b algebra is the Lorentz-like algebra SO(2, 4) in a “spacetime” of
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dimension d = 2 + 4: two times and 4 space dimensions. Or if you don’t like multiple

time dimensions, it’s the symmetry algebra of an anti-de-Sitter space with one time and 4

space dimensions, which can be embedded into the 2+4 dimensional space as a hypersurface

gabX
aXb = R2.

More generally, the conformal symmetry group in a Minkowski spacetime of d dimensions

(one time and d − 1 space) is SO(2, d). The anti-de-Sitter space with one time-like and d

spacelike dimensions has the same symmetry, which facilitates the AdS/CFT correspondence.

(Many conformal field theories are dual to supergravity theories on AdS spaces of one more

dimension than the gauge theory.)

In a Euclidean space of d dimensions, the conformal symmetry group is SO+(d + 1, 1).

For example, in 2 Euclidean dimensions, the conformal symmetry group is SO+(3, 1), which

is isomorphic to the Lorentz symmetry group in 4D. The simplest way to see that is in terms

of the spin group Spin(3, 1) = SL(2,C) — the group of 2× 2 complex matrices(
a b

c d

)
, ad− bc = 1. (12)

Each such matrix defines a fractional linear function

z′ =
az + b

cz + d
, (13)

which is a conformal map of the complex sphere C∗ onto itself. Conversely, all one-to-one

conformal maps of the complex sphere are meromorphic functions with a single pole, so

they have to have form (13) for some SL(2,C) matrix (12) and hence correspond to some

SO+(3, 1) Lorentz transform.

In two dimensions, one can define a much bigger conformal symmetry by including

the higher-order meromorphic functions, which are conformal but not one-to one. The

infinitesimal transformations of this bigger symmetry have form

δZ =
+∞∑

n=−∞
αnZ

n+1 + O(α2), (14)

and the corresponding generators Ln satisfy the Virasoro algebra. Any textbook on string

theory will describe this algebra in painful detail.
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? ? ?

Now consider the supersymmetric conformal theories. Any theory that has both the

conformal symmetry and the ordinary supersymmetries Qα and Q
α̇

must also have the

special conformal supersymmetries

Sα = − i
2 [Kαβ̇, Q

β̇
], S

α̇
= − i

2 [Kα̇β, Qβ]. (15)

The supercharges form spinor multiplets of the conformal symmetry group Spin(2, 4), which

is isomorphic to SU(2, 2). (A non-compact cousin of the SU(4), made of complex matrices

with det = 1 preserving an hermitian metric of signature (+ +−−).) In SU(2, 2) terms,

FA =

(
Qα

S
α̇

)
comprise 4, F

A
=
(
Q
α̇
, Sα

)
comprise 4̄, (16)

while the generators of the conformal symmetry comprise a hermitian traceless 4× 4 matrix

J B
A =

(
J β
α + 1

2δ
β
αD Pαβ̇

Kα̇β J α̇
β̇
− 1

2δ
α̇
β̇
D

)
, J A

A = 0. (17)

The commutators between these generators and the supercharges (16) follow from the

SU(2, 2) algebra,

[
J B
A , FC

]
= iδBCFA − i

4δ
B
AFC ,

[
J B
A , F

C]
= −iδCAF

B
+ i

4δ
B
AF

C
. (18)
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In 4D terms, these commutators become

[Jµν , Qα] = i
2(σµσ̄ν) βα Qβ ,

[Jµν , Sα] = i
2(σµσ̄ν) βα Sβ ,

[Jµν , Q
α̇
] = i

2(σ̄µσν)α̇
β̇
Q
β̇
,

[Jµν , S
α̇
] = i

2(σ̄µσν)α̇
β̇
S
β̇
, (19)

[D,Qα] = − i
2Qα,

[D,Q
α̇
] = − i

2Q
α̇
,

[D,Sα] = + i
2Sα ,

[D,S
α̇
] = + i

2S
α̇
, (20)

[Pµ, Qα] = [Pµ, Q
α̇
] = 0,

[Kµ, Sα] = [Kµ, S
α̇
] = 0, (21)

[Kµ, Qα] = iσµ
αβ̇
S
β̇
,

[Kµ, Q
α̇
] = iσ̄µα̇βSβ ,

[Pµ, Sα] = iσµ
αβ̇
Q
β̇
,

[Pµ, S
α̇
] = iσ̄µα̇βQβ (22)

In particular, eqs. (20) tell us that the ordinary supercharges Qα and Qα̇ have scaling di-

mension +1
2 while the special conformal supercharges Sα and Sα̇ have scaling dimension −1

2 .

The ordinary SUSY algebra includes the anticommutation relations

{Qα, Qβ} = {Qα̇, Qβ̇} = 0, {Qα, Qβ̇} = 2Pαβ̇ . (23)

Applying SU(2, 2) symmetries to both sides of these relations, we promote them to

{FA, FB} = {FA, FB} = 0, (24)

{FA, F
B} = 2J B

A + δBA × Z, (25)
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where Z is some kind of a central charge — a bosonic operator that commutes with the

whole superconformal symmetry SO(2, 4). But it does not commute with the supercharges

FA and F
A

.

To work out the commutator [Z, FA], let’s use the Jacobi identity

[
{FA, F

B}, FC
]

+ (A↔ C) =
[
F
B
, {FA, FC}

]
= 0. (26)

On the left hand side here,

[
{FA, F

B}, FC
]

=
[
(2J B

A + δBAZ), FC
]

= 2iδBCFA − i
2δ
B
AFC + δBA [Z, FC ]. (27)

hence

0 = 2iδBCFA− i
2δ
B
AFC + δBA [Z, FC ] + (A↔ C) = δBA

(
3
2iFC + [Z, FC ]

)
+ δBC

(
3
2iFA + [Z, FA]

)
(28)

and therefore

[Z, FA] = −3
2iFA . (29)

Similarly,

[Z, F
A

] = +3
2iF

A
. (30)

Physically, eqs. (29) and (30) mean the supercharges Qα and S
α̇

have central charges

Z = +3
2 while the supercharges Q

α̇
and Sα have central charges Z = −3

2 . In other words,

Z = 3
2R (31)

and the central charge generates the R–symmetry of a superconformal theory. Note that in

non-conformal supersymmetric theories, the R–symmetry is optional: in some theories, the

interactions respect the R-symmetry, in other theories they don’t. However, in the conformal

supersymmetric theories, the R–charge is a part of the superconformal algebra, without it

the algebra would not close. So if a theory has both SUSY and conformal symmetry, it must
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also have an R–symmetry. It does not have to be a pure–R symmetry but it could be a

combination of the pure-R with the axial symmetry, or with some other global symmetry of

the theory. Generically, its a global U(1) symmetry that gives different phase to bosons and

fermions,

Aµ → Aµ, λα → e+iρλα, φi → eiriρφi, ψαi → ei(ri−1)ρψαi . (32)

In an exactly superconformal theory, such an R-symmetry must be exact. But suppose a

supersymmetric theory is not conformal at high energies but at low energies the RG flows to

a non-trivial fixed point. In the deep IR, all the irrelevant operators become negligible, so

the effective theory without them becomes conformally invariant end hence superconformal.

The effective IR theory must have an exact R-symmetry, but we have more options at higher

energies: In the UV theory, the R-symmetry does not have to be exact, as long as all the

interactions which break it are irrelevant.

For the future reference, let me spell out the anticommutation relations (24) and (25) in

conventional 4D notations:

{Qα, Qβ} = {Qα, S
β̇} = {Sα̇, Sβ̇} = 0, (33)

{Qα̇, Qβ̇} = {Sα, Qβ̇} = {Sα, Sβ} = 0, (34)

{Qα, Qβ̇} = 2Pαβ̇ , (35)

{Sα̇, Sβ} = 2Kα̇β , (36)

{Qα, Sβ} = (σµσ̄ν) βα × Jµν + δβα ×
(

3
2R + D

)
. (37)

{Sβ̇, Qα̇} = (σ̄µσν)β̇α̇ × Jµν + δβ̇α̇ ×
(

3
2R − D

)
. (38)

? ? ?

The superconformal symmetries generated by the J B
A , R, FA, and F

A
form a super-group

called PSU(2, 2|1). Mathematically, it’s a group of pseudo-unitary matrices

exp

(
J B
A F

B

FA
3
2R

)
(39)

transforming four complex bosons (two timelike and two spacelike) and one complex fermion
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into each other. The bosonic part of this super-group is SU(2, 2)conformal × U(1)R while the

fermionic part is SUSY (ordinary plus conformal).

When an extended N = 2 or N = 4 supersymmetry is combined with conformal in-

variance (automatic for the N = 4 SYM theories), we get a larger superconformal group

PSU(2, 2|N ). This time we have pseudounitary matrices

exp

(
J B
A F

B
i

F iA
3
2R

i
j

)
(40)

acting on 4 complex bosons and N complex fermions. The bosonic part of this symmetry is

a direct product of the conformal SU(2, 2) symmetry and the extended R-symmetry U(N )R

while the fermionic part comprises N ordinary supersymmetries N conformal supersym-

metries. The fermionic anticommutation relations of the extended superconformal algebra

are

{F iA, F
j
B} = 0, {FAi , F

B
j } = 0, {F iA, F

B
j } = δij × J B

A + 3
2δ
B
A ×Rij . (41)
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