PHY-396 T: SUSY. Problem set \#1. Due September 3, 2009.

1. First of all, refresh your memory of basic SUSY. And if you have not finished reading about it during the summer, please do it now.
Warning: to follow this class, you absolutely have to be familiar with at least the first 3 items on the required self-study list: (1) The SUSY algebra, the supermultiplets, and the $\mathcal{N}=1$ superspace in 4 dimensions; (2) The chiral superfields and their interactions, the superpotential, and the Kähler function. (3) The abelian vector superfields and SQED. The remaining two items can wait a bit, but these three are needed from day one: If you do not grok the superfield formalism, you are SOL.
2. Second, an exercise in D-operator algebra.
(a) Calculate the commutators $\left[D_{\alpha}, \bar{D}^{2}\right],\left[\bar{D}_{\dot{\alpha}}, D^{2}\right]$, and $\left[D^{2}, \bar{D}^{2}\right]$.
(b) Show that $D^{\alpha} \bar{D}^{2} D_{\alpha}=\bar{D}_{\dot{\alpha}} D^{2} \bar{D}^{\dot{\alpha}}$.
(c) Show that $2 D^{\alpha} \bar{D}^{2} D_{\alpha}-D^{2} \bar{D}^{2}-\bar{D}^{2} D^{2}=16 \partial^{2}$.
(d) Now, let's define 3 projector operators,

$$
\begin{equation*}
\Pi_{C}=\frac{-1}{16 \partial^{2}} \bar{D}^{2} D^{2}, \quad \Pi_{A}=\frac{-1}{16 \partial^{2}} D^{2} \bar{D}^{2}, \quad \Pi_{L}=\frac{+1}{8 \partial^{2}} D^{\alpha} \bar{D}^{2} D_{\alpha} \tag{1}
\end{equation*}
$$

Verify that they are indeed projectors, i.e. satisfy $\Pi_{C}^{2}=\Pi_{C}, \Pi_{A}^{2}=\Pi_{A}$, and $\Pi_{L}^{2}=\Pi_{L}$. Also, verify that they all commute with each other and add up to 1.
Hint: Use $D D D=0$ (for any indices of the 3 D operators) and likewise $\overline{D D D}=0$.
These 3 projector operators correspond to the three kinds of linearly-constrained superfields: A chiral superfield Φ satisfies $\bar{D}_{\dot{\alpha}} \Phi=0$, and anti-chiral superfield $\bar{\Phi}$ satisfies $D_{\alpha} \bar{\Phi}=0$, and a linear superfield L satisfies $D^{2} L=\bar{D}^{2} L=0$.
(e) Verify the correspondence: show that for any superfield $X(x, \theta, \bar{\theta}), \Pi_{C} X$ is chiral, $\Pi_{A} X$ is anti-chiral, $\Pi_{L} X$ is linear, and also that $\Pi_{C} \Phi=\Phi$ for any chiral superfield $\Phi, \Pi_{A} \bar{\Phi}=\bar{\Phi}$ for any anti-chiral $\bar{\Phi}$, and $\Pi_{L} L=L$ for any linear superfield L.
3. Finally, consider a free massive vector superfield: a real general superfield $V(x, \theta, \bar{\theta})$ with action

$$
\begin{equation*}
S=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} V\left(m^{2}+\frac{1}{8} D^{\alpha} \bar{D}^{2} D_{\alpha}\right) V \tag{2}
\end{equation*}
$$

Off-shell, $V(x, \theta, \bar{\theta})$ is not subject to any constraints except $V^{\dagger}=V$, but on-shell it satisfies the equation of motion

$$
\begin{equation*}
\left(m^{2}+\frac{1}{8} D^{\alpha} \bar{D}^{2} D_{\alpha}\right) V=0 \tag{3}
\end{equation*}
$$

(a) Show that eq. (3) implies the Klein-Gordon equation $\left(m^{2}+\partial^{2}\right) V=0$ as well as $D^{2} V=\bar{D}^{2} V=0$. Consequently, on-shell V is a linear superfield.
(b) Expand $V(x, \theta, \bar{\theta})$ into component fields. Focus on the bosonic components C, f, f^{*}, A^{μ}, and \mathcal{D} and show that $D^{2} V=\bar{D}^{2} V=0$ implies $f=f^{*}=0, \mathcal{D}=-\partial^{2} C$ (and hence $\mathcal{D}=m^{2} C$), and $\partial_{\mu} A^{\mu}=0$. Consequently, the independent bosonic fields comprise a massive vector field $A^{\mu}(x)$ and a single real scalar $C(x)$.
(c) Now focus on the fermionic component fields $\chi_{\alpha}, \lambda_{\alpha}$ and their conjugates $\bar{\chi}_{\dot{\alpha}}$ and $\bar{\lambda}_{\dot{\alpha}}$ and show that they satisfy the Weyl equations. This is equivalent to a Dirac spinor field Ψ and its conjugate $\bar{\Psi}$, each satisfying the appropriate Dirac equation.

