PHY-396 T. Problem set \#2. Due September 10, 2009.

1. First, a couple of reading assignments, or rather catch-up-on-your-summer-reading assignments.
(a) Non-abelian vector superfield. Make sure you understand how various superfields $-\Phi, \bar{\Phi}, V, W^{\alpha}$, and $\bar{W}^{\dot{\alpha}}$ - transform under the non-abelian gauge symmetries and why they should transform that way.
(b) Supersymmetric non-abelian sigma models and (the basics of) Kähler geometry (the metric and its relation to the Kähler function, the Christoffel symbols, and the curvature tensor $R_{\bar{\imath} j \bar{k} \ell}$). Make sure you understand how

$$
\begin{equation*}
\mathcal{L}=\int d^{4} \theta K\left(\Phi^{1}, \ldots, \Phi^{n}, \bar{\Phi}^{1}, \ldots, \bar{\Phi}^{n}\right) \tag{1}
\end{equation*}
$$

expands to

$$
\begin{align*}
\mathcal{L} & =g_{\bar{\imath} j}(\phi, \bar{\phi}) \times \partial^{\mu} \bar{\phi}^{\bar{\imath}} \partial_{\mu} \phi^{j}+g_{\bar{\imath} j}(\phi, \bar{\phi}) \times \frac{i}{2}\left(\bar{\psi}_{\dot{\alpha} \bar{\tau}} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \overleftrightarrow{\partial_{\mu}} \psi_{\alpha}^{j}\right) \\
& +\frac{1}{2} \bar{\Psi}_{\dot{\alpha}}^{\bar{\imath}} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \psi_{\alpha}^{j} \times\left(i\{j, \bar{\imath}, k\}(\phi, \bar{\phi}) \partial_{\mu} \phi_{k}-i\{\bar{\imath}, j, \bar{k}\}(\phi, \bar{\phi}) \partial_{\mu} \bar{\phi}^{\bar{k}}\right) \tag{2}\\
& +R_{\bar{\imath} j \bar{k} \ell}(\phi, \bar{\phi}) \times \overline{\psi_{\bar{\imath}}} \bar{\psi}^{\dot{\alpha} \bar{k}} \psi^{\alpha j} \psi_{\alpha}^{\ell} .
\end{align*}
$$

2. Now consider the SUSY gauge theory with $G=S U(2)$ and two doublets of chiral superfields. Assume the scalar fields have non-zero VEVs and the gauge symmetry is Higgsed down to nothing.
(a) Impose a superfield unitary gauge, show that in that gauge

$$
\begin{equation*}
\mathcal{L}=\frac{i \tau}{8 \pi} \int d^{2} \theta \operatorname{tr}\left(W^{\alpha} W_{\alpha}\right)+\frac{-i \tau^{*}}{8 \pi} \int d^{2} \bar{\theta} \operatorname{tr}\left(\bar{W}_{\dot{\alpha}} \bar{W}^{\dot{\alpha}}\right)+\int d^{4} \theta \bar{\Phi} \Phi \times \operatorname{tr}\left(e^{2 V}\right), \tag{3}
\end{equation*}
$$

and argue that this gives equal masses to the three vector superfields $V^{1,2,3}$.
(b) The reason all vector masses are equal is the un-broken global $S U(2)$ symmetry. Identify the action of this symmetry, show that the scalar VEVs break

$$
\begin{equation*}
S U(2)_{\text {global }} \times S U(2)_{\text {gauge }} \rightarrow S U(2)_{\text {global }} . \tag{4}
\end{equation*}
$$

and that the 3 massive vector superfield form a triplet of the un-broken $S U(2)$ that's why their masses have to be equal.
(c) Now go to the Wess-Zumino gauge, expand the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{i \tau}{8 \pi} \int d^{2} \theta \operatorname{tr}\left(W^{\alpha} W_{\alpha}\right)+\frac{-i \tau^{*}}{8 \pi} \int d^{2} \bar{\theta} \operatorname{tr}\left(\bar{W}_{\dot{\alpha}} \bar{W}^{\dot{\alpha}}\right)+\int d^{4} \theta\left(\bar{A} e^{2 V} A+\bar{B} e^{2 V} B\right) \tag{5}
\end{equation*}
$$

into component fields, and explain how all the massive components get their masses.
3. Finally, consider the $S U(2)$ SUSY gauge theory with a triplet $\Phi=\left(\Phi^{1}, \Phi^{2}, \Phi^{3}\right)$ of chiral superfields. This triplet may be written in a matrix form as a traceless 2×2 matrix $\Phi=\sum_{a} \Phi^{a}(y, \theta) \times \frac{\tau^{a}}{2}$.
(a) Explain how the matrices Φ and $\bar{\Phi}$ transform under the superfield gauge symmetries and show that the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\mathrm{SYM}}+\int d^{4} \theta \operatorname{tr}\left(\bar{\Phi} e^{+2 V} \Phi e^{-2 V}\right) \tag{6}
\end{equation*}
$$

is gauge invariant.
(b) Calculate the scalar potential for this theory and show that it vanishes iff $\left[\phi^{\dagger}, \phi\right]=$ 0 , or in $S O(3)$ notations, iff $\vec{\phi}^{*} \times \vec{\phi}=0$.
(c) Argue that while generic $\langle\phi\rangle$ and $\left\langle\phi^{\dagger}\right\rangle$ would break the $S U(2)$ symmetry down to nothing, along the flat directions of the potential there is an unbroken $U(1)$ subgroup of the $S U(2)$.
(d) Count the fields to show that the theory has one complex modulus. Also, show that there is only one holomorphic gauge invariant combination of the chiral fields, namely $U=\operatorname{tr}\left(\Phi^{2}\right)=\frac{1}{2} \sum_{a}\left(\Phi^{a}\right)^{2}$.

