1. Consider supersymmetric QCD with N_{c} colors and N_{f} flavors. In matrix notations, the quark chiral superfields $A_{i}{ }^{f}(y, \theta)$ form an $N_{c} \times N_{f}$ matrix A while the antiquark chiral superfields $B_{f}^{i}(y, \theta)$ form an $N_{f} \times N_{c}$ matrix B. Let all the flavors be exactly massless, so the Lagrangian is

$$
\begin{equation*}
\mathcal{L}=\frac{i \tau}{8 \pi} \int d^{2} \theta \operatorname{tr}\left(W^{\alpha} W_{\alpha}\right)+\text { H.c. }+\int d^{4} \theta \operatorname{tr}\left(\bar{A} e^{+2 V} A+B e^{-2 V} \bar{B}\right) \tag{1}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
V_{\text {scalar }}=\frac{g^{2}}{8} \sum_{a=1}^{N^{2}-1}\left[\operatorname{tr}\left(\lambda^{a}\left(A A^{\dagger}-B^{\dagger} B\right)\right)\right]^{2} \tag{2}
\end{equation*}
$$

(b) Show that this potential vanishes if and only if

$$
\begin{equation*}
A A^{\dagger}-B^{\dagger} B=c \times \mathbf{1}_{\mathrm{N}_{\mathrm{c}} \times \mathrm{N}_{\mathrm{c}}} \tag{3}
\end{equation*}
$$

for some real number c. Also show that for $N_{f}<N_{c}$ this matrix relation implies $c=0$ and hence

$$
\begin{equation*}
A A^{\dagger}=B^{\dagger} B \tag{4}
\end{equation*}
$$

(c) Show that all solutions to eqs. (4) have form

$$
\begin{equation*}
A=U_{C} \times\left(\frac{\mathbf{D}_{N_{f} \times N_{f}}}{\mathbf{0}_{\left(N_{c}-N_{f}\right) \times N_{f}}}\right) \times V_{A}, \quad B=V_{B} \times\left(\mathbf{D}_{N_{f} \times N_{f}} \mid \mathbf{0}_{N_{F} \times\left(N_{c}-N_{f}\right)}\right) \times U_{C}^{-1} \tag{5}
\end{equation*}
$$

where U_{C} is an $S U\left(N_{c}\right)$ matrix (same gauge symmetry for A and B), V_{A} and V_{B} are $N_{F} \times N_{F}$ unitary matrices, and \mathbf{D} is a real ≥ 0 diagonal $N_{f} \times N_{F}$ matrix, same $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots d_{N_{f}}\right)$ for both A and B.
(d) The independent holomorphic moduli of the flat directions form an $N_{f} \times N_{f}$ matrix $\mathcal{M}=B A$. (We assume $N_{f}<N_{c}$.) Use eqs. (5) to argue that this moduli matrix indeed uniquely determined a point in the moduli space, i.e., a pair of matrices A and B matrices satisfying eq. (4) modulo an $S U\left(N_{c}\right)$ gauge symmetry. In other words, pairs (A, B) and $\left(U A, B U^{\dagger}\right)$ related by a gauge symmetry U count as the same point in the moduli space.
2. Now consider the superfield Feynman rules for the Wess-Zumino model or a more general theory that has only chiral superfields (and their antichiral conjugates) and all the interactions come from the superpotential. Let's count the fermionic derivative operators D^{α} and $\bar{D}^{\dot{\alpha}}$ in a generic Feynman diagram, tree or loop. This counting should be done before you do the Grassmannian integrals and use up some derivatives to close the loops via $\left.D^{2} \bar{D}^{2} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right)\right|_{\theta_{1}=\theta_{2}}=16$, etc..

Show that the net number of the fermionic derivatives is

$$
\begin{equation*}
\#\left(D^{\alpha}\right)+\#\left(\bar{D}^{\dot{\alpha}}\right)=2 \#(\text { loops })+2 \#(\Phi \bar{\Phi} \text { propagators })-2 . \tag{6}
\end{equation*}
$$

Note that this number is non-negative for all loop graphs and also for all tree graphs that have a propagator of the $\Phi \bar{\Phi}$ type. Consequently, all such graphs yields amplitudes of the $\int d^{4} \theta$ form.

The only exceptions are the tree graphs where all propagators are of the types $\Phi \Phi$ or $\overline{\Phi \Phi}$. For such graphs there is one un-cancelled $1 / D^{2}$ or $1 / \bar{D}^{2}$ factor from the vertices and the resulting amplitudes have form

$$
\begin{equation*}
\int d^{4} \theta \frac{-4}{\bar{D}^{2}} \Phi \times \Phi \cdots \Phi=\int d^{2} \theta \Phi \times \Phi \cdots \Phi \quad \text { or } \quad \int d^{4} \theta \frac{-4}{D^{2}} \bar{\Phi} \times \bar{\Phi} \cdots \bar{\Phi}=\int d^{2} \bar{\theta} \bar{\Phi} \times \bar{\Phi} \cdots \bar{\Phi} . \tag{7}
\end{equation*}
$$

This is how integrating out massive fields can yields superpotential terms, but only at the tree level.
3. Finally, consider supersymmetric QED,

$$
\begin{equation*}
\mathcal{L}=\int d^{4} \theta\left(\bar{A} e^{+2 e V} A+\bar{B} e^{-2 e V} B+\frac{1}{8} V D^{\alpha} \bar{D}^{2} D_{\alpha} V\right)+\int d^{2} \theta m A B \int d^{2} \bar{\theta} m^{*} \overline{A B} \tag{8}
\end{equation*}
$$

Superfield Feynman rules for SQED will be explained in class next week. For now, please take them for granted:

- Chiral propagators:

$$
\begin{align*}
& \bar{A} \longleftrightarrow A=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{\bar{D}^{2} D^{2}}{16} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right), \\
& \bar{A} \bar{B}=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{m \bar{D}^{2}}{4} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right), \tag{9}\\
& B \longleftrightarrow A=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{m^{*} D^{2}}{4} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right), \\
& B \longleftrightarrow \bar{B}=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{D^{2} \bar{D}^{2}}{16} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right),
\end{align*}
$$

- Vector propagator in the Feynman gauge:

$$
\begin{equation*}
V \sim \sim \sim \sim V=\frac{i}{k^{2}+i 0} \times \delta^{(4)}\left(\theta_{1}-\theta_{2}\right) \tag{10}
\end{equation*}
$$

- Vertices: One incoming chiral line, one outgoing chiral line of the same species, any number $n=1,2,3, \ldots$ of vector lines,

$$
\begin{equation*}
=i(+2 e)^{n}, \tag{11}
\end{equation*}
$$

without any superderivative factors in the numerator or denominator.

Count the superderivatives and powers of momenta in a general Feynman diagram and show that a diagram with E_{C} external legs of chiral superfields $(A, B, \bar{A}$, or $\bar{B})$, E_{V} external legs of vectors, and any numbers of loops, vertices, and internal lines has superficial degree of divergence

$$
\begin{equation*}
\Delta \leq 2-E_{C} \tag{12}
\end{equation*}
$$

In class, I shall use this formula to prove that SQED is renormalizable.

