
PHY–396 T. Problem set #3. Due September 17, 2009.

1. Consider supersymmetric QCD with Nc colors and Nf flavors. In matrix notations, the

quark chiral superfields A f
i (y, θ) form an Nc × Nf matrix A while the antiquark chiral

superfields B i
f (y, θ) form an Nf ×Nc matrix B. Let all the flavors be exactly massless, so

the Lagrangian is

L =
iτ

8π

∫

d2θ tr(WαWα) + H. c. +

∫

d4θ tr
(

Ae+2VA + B e−2VB
)

. (1)

(a) Show that

Vscalar =
g2

8

N2−1
∑

a=1

[

tr
(

λa
(

AA† − B†B
)

)]2
. (2)

(b) Show that this potential vanishes if and only if

AA† − B†B = c× 1Nc×Nc
(3)

for some real number c. Also show that for Nf < Nc this matrix relation implies

c = 0 and hence

AA† = B†B. (4)

(c) Show that all solutions to eqs. (4) have form

A = UC×







DNf×Nf

0(Nc−Nf )×Nf






×VA , B = VB×

(

DNf×Nf
0NF×(Nc−Nf )

)

×U−1
C

(5)

where UC is an SU(Nc) matrix (same gauge symmetry for A and B), VA and VB

are NF ×NF unitary matrices, and D is a real ≥ 0 diagonal Nf × NF matrix, same

D = diag(d1, . . . dNf
) for both A and B.
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(d) The independent holomorphic moduli of the flat directions form an Nf × Nf matrix

M = BA. (We assume Nf < Nc.) Use eqs. (5) to argue that this moduli matrix

indeed uniquely determined a point in the moduli space, i.e., a pair of matrices A and

B matrices satisfying eq. (4) modulo an SU(Nc) gauge symmetry. In other words,

pairs (A,B) and (UA,BU†) related by a gauge symmetry U count as the same point

in the moduli space.

2. Now consider the superfield Feynman rules for the Wess–Zumino model or a more gen-

eral theory that has only chiral superfields (and their antichiral conjugates) and all the

interactions come from the superpotential. Let’s count the fermionic derivative operators

Dα and D
α̇
in a generic Feynman diagram, tree or loop. This counting should be done

before you do the Grassmannian integrals and use up some derivatives to close the loops

via D2D
2
δ(4) (θ1 − θ2)|θ1=θ2

= 16, etc..

Show that the net number of the fermionic derivatives is

#(Dα) + #(D
α̇
) = 2#(loops) + 2#(ΦΦ propagators) − 2. (6)

Note that this number is non-negative for all loop graphs and also for all tree graphs that

have a propagator of the ΦΦ type. Consequently, all such graphs yields amplitudes of the
∫

d4θ form.

The only exceptions are the tree graphs where all propagators are of the types ΦΦ or ΦΦ.

For such graphs there is one un-cancelled 1/D2 or 1/D
2
factor from the vertices and the

resulting amplitudes have form

∫

d4θ
−4

D
2Φ×Φ · · ·Φ =

∫

d2θΦ×Φ · · ·Φ or

∫

d4θ
−4

D2
Φ×Φ · · ·Φ =

∫

d2θ̄Φ×Φ · · ·Φ.

(7)

This is how integrating out massive fields can yields superpotential terms, but only at the

tree level.
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3. Finally, consider supersymmetric QED,

L =

∫

d4θ
(

Ae+2eVA + Be−2eVB + 1
8V DαD

2
DαV

)

+

∫

d2θmAB

∫

d2θ̄ m∗AB. (8)

Superfield Feynman rules for SQED will be explained in class next week. For now, please

take them for granted:

• Chiral propagators:

A A =
i

p2 −mm∗ + i0
×

D
2
D2

16
δ(4)(θ1 − θ2),

A B =
i

p2 −mm∗ + i0
×

mD
2

4
δ(4)(θ1 − θ2),

B A =
i

p2 −mm∗ + i0
×

m∗D2

4
δ(4)(θ1 − θ2),

B B =
i

p2 −mm∗ + i0
×

D2D
2

16
δ(4)(θ1 − θ2),

(9)

• Vector propagator in the Feynman gauge:

V V =
i

k2 + i0
× δ(4)(θ1 − θ2). (10)

• Vertices: One incoming chiral line, one outgoing chiral line of the same species, any

number n = 1, 2, 3, . . . of vector lines,

A

A

V

V

= i(+2e)n,

B

B

V

V

= i(−2e)n, (11)

without any superderivative factors in the numerator or denominator.
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Count the superderivatives and powers of momenta in a general Feynman diagram and

show that a diagram with EC external legs of chiral superfields (A, B, A, or B), EV ex-

ternal legs of vectors, and any numbers of loops, vertices, and internal lines has superficial

degree of divergence

∆ ≤ 2 − EC . (12)

In class, I shall use this formula to prove that SQED is renormalizable.
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